
Distributed Control of Electric 
Vehicle Charging 

Omid Ardakanian, Catherine Rosenberg, S. Keshav 



EV market is growing rapidly 

2 



Electric Vehicles – Challenges & Opportunities 

3 

spatial & temporal 
uncertainties 

EV charging load is 
significant 

~ 



Electric Vehicles – Challenges & Opportunities 

4 

spatial & temporal 
uncertainties 

impact on the 
distribution network 

EV charging load is 
significant 



Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R., "Integration of Electric Vehicles in the 
Electric Power System," Proceedings of the IEEE , vol.99, no.1, pp.168,183, Jan. 2011 

Impacts on the Grid 
• Branch and transformer congestion 

– accelerates degradation of power apparatus 

– leads to overheating (risk of explosion) 

– may trigger the protection system 

• Voltage swings at distant buses 
– affects the grid reliability 
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State of the Art Approach: Scheduling 

• Scheduling solutions typically solve a power flow 
problem 

 

• They rely on 

– an accurate model of the distribution network 

– prediction of the home loads 

– prediction of arrivals and departures of EVs 
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Our Approach is… 

To adapt the charging rate of EV chargers to the available 
capacity of the distribution network in real-time using the 
same tricks as TCP congestion control  

 

 

Real-time control is feasible in the smart grid  
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Smart Grid Enables Real-time Control 

• Pervasive measurement 

• Broadband communication 

• Increased intelligence 
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MCC nodes 

Smart  
chargers 

Every line/transformer 
has a setpoint 



We are inspired by the success of TCP 
congestion control 
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Optimal Control 

A single snapshot optimization problem: 

max
𝑟𝑎𝑡𝑒
 log 𝑟𝑎𝑡𝑒𝑠
𝑠∈𝒮 

 

subject to   

0 ≤ 𝑟𝑎𝑡𝑒𝑠 ≤ 𝑚𝑎𝑥𝑟𝑎𝑡𝑒𝑠    ∀𝑠 ∈ 𝒮 

𝐸𝑉 𝑙𝑜𝑎𝑑𝑙 + ℎ𝑜𝑚𝑒 𝑙𝑜𝑎𝑑𝑙 ≤ 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑙
  ∀𝑙 ∈ ℒ 
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Optimal Control 

Consider a series of snapshots 
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Distributed Control vs. Centralized Control 

Pros: 

• No single point of failure 

• Scalability 

• Charging rates do not change drastically  
– the stepsize bounds the change 

 
Cons: 

• Convergence time 

• Communication overhead 
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Dual Decomposition & Control Rules 

 

 

 

 

 
 

• Two phases are repeated in every iteration of the algorithm 
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Master Problem 
(solved at MCC nodes) 

Subproblem 1 
(solved at EV charger 1) 

Subproblem n 
(solved at EV charger n) 

𝑝𝑟𝑖𝑐𝑒𝑠 𝑝𝑟𝑖𝑐𝑒𝑠 

… 

Lagrangian multipliers  



Dual Decomposition & Control Rules 

 

 

 

 

 

 

17 

MCC nodes solve 
master problem 

Smart chargers solve 
subproblems 



Dual Decomposition & Control Rules 

 

 

 

 

 
 

1. MCC nodes update congestion prices and send them to downstream EV chargers 

𝑝𝑟𝑖𝑐𝑒𝑙 ← max {𝑝𝑟𝑖𝑐𝑒𝑙 − 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 × (𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑙 − 𝑙𝑜𝑎𝑑𝑙), 0} 
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Dual Decomposition & Control Rules 

 

 

 

 

 
 

2. New rates are obtained from solving subproblems using new congestion prices 

 𝑟𝑎𝑡𝑒𝑠← min
1

𝑝𝑎𝑡ℎ 𝑝𝑟𝑖𝑐𝑒𝑠
, 𝑚𝑎𝑥𝑟𝑎𝑡𝑒𝑠  
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Master Problem 
(solved at MCC nodes) 

Subproblem 1 
(solved at EV charger 1) 

Subproblem n 
(solved at EV charger n) 

… 
𝑟𝑎𝑡𝑒1

 

 

𝐸𝑉 𝑙𝑜𝑎𝑑𝑙
 

 

𝑟𝑎𝑡𝑒𝑛
 

 



Measurement/Control Timescale 
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Measurement/Control Timescale 
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Measurement/Control Timescale 
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t = Tc 

iteration 2 

MCC node increases 
congestion price 
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Measurement/Control Timescale 
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t = Tc+delay 
iteration 2 
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Stability 

• Control is stable for 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 ≤ 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒∗, 𝑇𝑐 ≥ 𝑑𝑒𝑙𝑎𝑦 

• The rate of convergence depends on both 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒, 𝑇𝑐 
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Simulation 

IEEE 13-bus test feeder 
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Operation Modes of the Algorithm 

• Normal operation mode 

• Emergency response mode 
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Conclusions 

• Controlling the EV charging load reduces the 
need for over-provisioning 

 

• Pervasive measurement and broadband 
communication in a distribution network 
motivate real-time control of elastic loads 

 

• Using explicit congestion notification, the EV 
charging load can be controlled in real-time 
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Guidelines for Setting Control Parameters 

• 𝑇𝑐 must be as small as possible 

– But in practice 𝑇𝑐 ≫ 𝑑𝑒𝑙𝑎𝑦 

• 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 must be as large as possible 

– 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒∗ 

• 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 can be chosen such that overshoots do 
not cause line or transformer overloading 
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