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Global Warming is Unequivocal

since 2000, with the exception of 1998.”

Data source: NASA/GISS
Credit: NASA Scientific Visualization Studio

“The 10 warmest years in the |32-year record all have occurred|



Global Efforts to Combat
Climate Change

But even then, energy sector
are not on track for a 2°C scenario
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Global Efforts to Combat
Climate Change

But even then, energy sector
are not on track for a 2°C scenario
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To achieve 2°C target
50 the energy sector must
be carbon-neutral by 2100
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Urgent Action Needed to Reduce
Carbon Emissions

How to integrate low-carbon and
renewable energy resources into
the energy portfolio!?

How to increase efficiency,
utilization, and economic viability
of energy systems!
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renewable energy resources into &7  Monitor,
Model,

Manage!

the energy portfolio!?
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Unprecedented Opportunities

 New economic and social needs



Unprecedented Opportunities

* Declining costs of low-carbon and renewable technologies
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Cost deflation has affected diverse technologies across the energy spectrum
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Unprecedented Opportunities

* Pervasive sensing and control
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Energy Data Collection and Analysis
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Energy Data Collection and Analysis

2010 2016
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HVAC Sensors
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light



OUTLINE Monitor Model Manage

Home EV Charging
. i ; GreenMetrics’| 2

Transportation eEnergy’ |3

Electrification ' | ToSG’1 4

Solar EV Charging
SmartGridComm’[ 4

| g HVAC
T Sub-Metering BuildSys’1 6
Buildings GreenNets’l | | Residential Buildings
| i EnDM’1 4

....................................................................................................................................................................................................................................

g g System Identification
Phasor Distribution PES GM’17
Power Measurement | Component Sizing ! Event Classification
Grids Units eEnergy’l 2 ISGT’17
ongoing GreenMetrics’| 2 . PV and Storage Integration
: : SpringerBrief’1 6




OUTLINE Monitor Model Manage

Home EV Charging
. : ; GreenMetrics’| 2

Transportation eEnergy’ |3

Electrification ' | ToSG’1 4

Solar EV Charging
SmartGridComm’[ 4

| g HVAC
T Sub-Metering BuildSys’1 6
Buildings GreenNets’l | | Residential Buildings
| i EnDM’1 4

....................................................................................................................................................................................................................................

g 5 System Identification

Phasor i Distribution i PES GM’17

Power Measurement | Component Sizing | Event Classification

Grids Units eEnergy’l 2 ISGT’17

ongoing GreenMetrics’| 2 . PV and Storage Integration
SpringerBrief’1 6

Omid Ardakanian, S. Keshay, Catherine Rosenberg, “Real-Time Distributed Control for Smart Electric Vehicle Chargers:

From a Static to a Dynamic Study®, IEEE Transactions on Smart Grid, vol.5, no.5, pp.2295-2305, 2014.

Omid Ardakanian, Catherine Rosenberg, S. Keshav, “Quantifying the Benefits of Extending Electric Vehicle Charging

Deadlines with Solar Generation®, In Proceedings of IEEE SmartGridComm, pp.620-625, 2014.

Omid Ardakanian, Catherine Rosenberg, S. Keshav, “Distributed Control of Electric Vehicle Charging®, In Proceedings of

ACM International Conference on Future Energy Systems (e-Energy), pp.101-112, 2013. Winner of Best Paper Award.

Omid Ardakanian, Catherine Rosenberg, S. Keshav, “Real-time distributed congestion control for electrical vehicle

charging®, invited paper, ACM SIGMETRICS Performance Evaluation Review, vol.40, no.3, pp.38-42, 2012.
3




Penetration of Electric Vehicles ,)J::&

1s Expected to Increase in Future e

- -—— _ e r———————————— - -

—
- r
A At ettt . S N 0, AT A . A A A G S ., e PG o -y wE,

i e e ot [N TR

i 3
!y S o s

_ e
CHARGING STATION FOR ELECTRIC CARS!

A 1™

I50m |
alectric car%



eEnergy’l 3

Opportunistic EV Charging
Leads to Grid Congestion
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Opportunistic EV Charging
Leads to Grid Congestion

S

[Spatial/temporal uncertaintiesj T

) Overloads transformers j

[ Schedule charging of EVs J 2) Increases peak demand
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Possible Approaches to
Coordinate EV Charging
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eEnergy’l 3

Possible Approaches to
Coordinate EV Charging

- Scheduling: solve an optimal power flow (OPF) problem to
determine the charge powers

- a non-convex optimization problem solved hours ahead
- precise model of the distribution network (unavailable)

- EV arrival and departure times (unknown)
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Possible Approaches to
Coordinate EV Charging

- Distributed feedback control: let the system solve power flow
equations

- measure steady-state response using sensors installed at hotspots

- signal congestion using an overlay network connecting sensors to EV
chargers
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Possible Approaches to
Coordinate EV Charging

- Distributed feedback control: let the system solve power flow
equations

- measure steady-state response using sensors installed at hotspots

- signal congestion using an overlay network connecting sensors to EV
chargers

o e — — == ===
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K It is a TCP-like congestion control algorithm!
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Pervasive Sensing and Control in
Radial Distribution Systems

every line or
transformer has a
rated capacity and a
setpoint
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Pervasive Sensing and Control in
Radial Distribution Systems
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Pervasive Sensing and Control in
Radial Distribution Systems

Broadband
Transmission Network Communications
/ Network
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line/transformer loading

eEnergy’l 3

TCP-Inspired Control

sum of controlled and uncontrolled loads <«--------ccccaaeeooe measured
\ equipment loading
|
‘__/
it ' A\ l' B e - = Capacity -
F Fike controlled demands of
E H load <o > EV chargers
*
) uncontrolled household
Fia.,  F 0 T e >
load demands

time
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Fair Allocation of Available Capacity

Network Utility Maximization Problem:

max 2 log(rate, )~ proportional fairness

rate,
reC [Kelly98], [Low99], [Yaiche00]
subject to ~ charge power

/S\mtex < maxrate, VxeC

rate_+homeload, <setpoint, V/eL

chargers 1n subtree /
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' Control rules are obtained by solving this optimization problem
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Fair Allocation of Available Capacity

Network Utility Maximization Problem:

max 2 log(rate, )~ proportional fairness

rate,
reC [Kelly98], [Low99], [Yaiche00]
subject to ~ charge power
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Dual Decomposition for

Distributed Control

Iteration K, Phase |

pricy

-

Master Problem

DN

(solved at the substation)

\_

J

-

\_

~N

price; <« max{price; — stepsize X (setpoint; — load,;), 0}

15

&rices

~

J
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J \_

1. PMUs update congestion prices and send them to downstream EV chargers

eEnergy’l 3
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Dual Decomposition for
Distributed Control

Iteration K, Phase 2

/ \C\E_V load

Master Problem
(solved at the substation)

\_ J

4 4
Subproblem | Subproblem n
(solved at EV charger ) (solved at EV charger n)
\_ \_
Phase 2: New rates are obtained from solving subproblems using new congestion prices
1
rateg< min — , maxrate
path price,
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Dual Decomposition for
Distributed Control

Iteration K, Phase 2

[ E EV load

We can accommodate |0 times more EVs
than the uncontrolled charging scenario!

\-

USSIved at EV charger I)J *

Phase 2: New rates are obtained from solving subproblems using new congestion prices

1
path price,

rateg< min { , maxrates}
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Open-Source Simulation Software

Modelling

Optimization

Power Flow

Evaluation

(OpenDSS

\

( Runtime Environment il Simulator
_ interfaced . _I*” s 5
anﬁg Traces solvers Lo l =
Files ' 1 -
/ \_/ A
0O L
Models Scripts \ /
5 b VNN Networ% Power
Data Model Injection

* Modular design, suitable for defining large-scale simulation scenarios
* Interfaces with optimization software and power flow solvers

* Includes plotting and reporting services

Download code
from GitHub
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HVAC accounts for 40-60% of energy use in commercial buildings
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HVAC in Moderate Climates
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Supplies air at 14°C
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HVAC in Moderate Climates

AHU

Supplies air at 14°C

WV

VAV with ‘ ------ .
. ‘ Damper position

Reheat
‘ .. sensor

Temp sens;or/ \ Reheat discharge
Sensor

Reheats supply air to a setpoint, e.g. 23°C

No occupancy sensor! Zone
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HVAC in Moderate Climates

BMS
* Archives data
* Controls indoor climate 5 AHU

@!)A,/' Supplies air at 14°C

Building
Masl;agement
stem < .
T~ = = V
‘VAV with ‘ ..... Damper position
e Reheat ‘ Per P
: ... sensor

Temp sens;or/ \ Reheat discharge
Sensor

Reheats supply air to a setpoint, e.g. 23°C

No occupancy sensor! Zone
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HVAC in Moderate Climates

BMS
* Archives data
* Controls indoor climate 5 ARU

@!)A/" Supplies air at 14°C

Building
Management
System «
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g ‘ Damper position
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Reheats supply air to a setpoint, e.g. 23°C
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HVAC Systems are Inefficient

 HVAC systems run on a static schedule based on building
manager’s intuition.

—Does not take occupancy into account

—Wastes energy in conditioning empty or partially-occupied
spaces
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* To optimize HVAC energy consumption, zones should be
conditioned only when occupied

21



BuildSys’! 6

HVAC Systems are Inefficient

 HVAC systems run on a static schedule based on building
manager’s intuition.

—Does not take occupancy into account

—Wastes energy in conditioning empty or partially-occupied
spaces

* To optimize HVAC energy consumption, zones should be
conditioned only when occupied

— — B— — — _—

/
|

- Occupancy sensors are not available!
Retrofitting is costly and intrusive.

= - — e _———— — —— = - —
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Exploiting Existing HVAC Sensors
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Exploiting Existing HVAC Sensors
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Exploiting Existing HVAC Sensors
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Exploiting Existing HVAC Sensors

Reheat goes down when zone is occupied
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Exploiting Existing HVAC Sensors

Reheat goes down when zone is occupied
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Overall Analysis Pipeline

occupancy
iIndicative signal
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frequency bands
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Overall Analysis Pipeline

occupancy

e anomalous zones
iIndicative signal
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Overall Analysis Pipeline

occupancy
iIndicative signal

Apparent
I—>[ Distillation ]—»[Stggteccrl?;?e}—»[ Occupancy ]—»[ Clustering ]
Computation

anomalous zones

: ? lnormal zones
' A Energy -
| .| Decomposition | [ Savi ] Defining J
oy - avings -+
l & Filtering ) Calculation k Schedules
frequency bands aggressiveness
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Testbed
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Testbed

Three large UC Berkeley campus buildings
— 117, 109 and 270 zones respectively

— Buildings had different BMS systems

— 3-6 months of data analyzed

24
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Validation

Collected limited ground truth data:

- Manually logged occupancy hours of 7 shared and private offices
in our testbed

- Extracted occupancy hours from video recordings (a security
camera installed in a lab)
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Validation

Collected limited ground truth data:

- Manually logged occupancy hours of 7 shared and private offices
in our testbed

- Extracted occupancy hours from video recordings (a security
camera installed in a lab)

Door—m
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Schedules and Iradeoffs
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Schedules and Iradeoffs
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Schedules and Iradeoffs
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Schedules and Iradeoffs
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Saving on Reheat Energy
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Saving on Reheat Energy
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Saving on Reheat Energy
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Saving on Reheat Energy

Possible relhoeat energy savings
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OUTLINE Monitor Model

Manage

Home EV Charging
g ! GreenMetrics’| 2
Transportation eEnergy’l 3
Electrification ToSGI4
! ] Solar EV Charging
SmartGridComm’| 4

s g HVAC
Buildi Sub-Metering BuildSys’1 6
undings GreenNets'| | | Residential Buildings
i ’ EnDM’[ 4
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g 5 System ldentification
Phasor Distribution PES GM’1'7
Power Measurement | Component Sizing | Event Classification
Grids Units eEnergy’l 2 ISGT’17
ongoing GreenMetrics’| 2 i PV and Storage Integration
5 ' SpringerBrief’1 6

 Omid Ardakanian, S. Keshav, Catherine Rosenberg, “Integration of Renewable Generation and Elastic Loads into
Distribution Grids®, Springer Briefs in Electrical and Computer Engineering, 2016.
* Omid Ardakanian, Ye Yuan, Roel Dobbe, Alexandra von Meier, Steven Low, Claire Tomlin, “Event Detection and
Localization in Distribution Grids with Phasor Measurement Units”, To appear in IEEE PES General Meeting, 2017.
* Daniel Arnold, Ciaran Roberts, Omid Ardakanian, Emma Stewart, “Synchrophasor Data Analytics in Distribution Grids”,
To appear in IEEE Innovative Smart Grid Technologies (ISGT), 2017.
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Enabling Large-Scale Integration of
Active End-Nodes

e electric cars
e solar cells and inverters
* micro wind turbines

substation ;'
Al

* batteries
b I . vV A . Problem 1: the global power allocation problem
alancing zones ¢ I Inputs: p'(£), q'(£),€, B° (£),5°, B*(£), B* (), * (1), 1, £, T, S

. . . . ) 1 c(t)) + S(t
Avoid distribution network problems e 02,00 (D 00 g PEBEE) + 2, 2E)
 over- and under-voltage ‘ subject to

End-node Constraints

 overloads System Constraints
* reverse Power ﬂ OWS Bus Injection Equations

30 Power Flow Equations
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Enabling Large-Scale Integration of
Active End-Nodes

e electric cars
* solar cells and inverters
* micro wind turbines
* batteries

. VA
balancing zones
‘ O Decentralized control
substation controller

balancing zone controllers
end-nodes

Avoid distribution network problems
* over- and under-voltage

* overloads

* reverse power flows
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Detecting Rare Events In
Massive Amounts of Data in Real-Time
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The Range of Relevant Time Increments in
Power System Planning and Operation
Spans 15 Orders of Magnitude!

[vonMeier 4]

hour-ahead scheduling and
resolution of most renewables
one a.c. cycle AGC signal integration studies

dynamic
system

response

(stability)

wind and solar
output variation

synchro-phasors

protective relay
operation

service T&D planning

high-frequency restoration carbon emission

switching devices, day-ahead A goals
inverters demand scheduling /\
response / ‘\
/
\\
[ | | | | | | | | | | | | | | |
10-6 10-3 100 103 106 109 seconds
millisecond second minute hour day year decade
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PES’17

ISGT’17
Beyond Predictive Analytics
Model Validation
* Inferring the admrttance matrix from
time-synchronized measurements; I = YV
* Sparse recovery techniques Event Detection and Classification
.. |+ Data-driven approach
s\s /' * Candidate events labelled by domain experts
\\ ," * A library of various events

high-precision, high-sample-rate
data from many locations

4
4
24
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Equipment Health Monitoring

* Predictive maintenance

* |Informed recommendations
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ISGT’17
Beyond Predictive Analytics
Model Validation
* Inferring the admrttance matrix from
time-synchronized measurements; I = YV
» Sparse recovery techniques Event Detection and Classification
.. |+ Data-driven approach
R /' * Candidate events labelled by domain experts
s e Ay of varione evente

\-

This analytics framework is currently used by
several power system operators in California

a— ' 5 = BEESNs =

4

Equipment Health Monitoring

* Predictive maintenance

* |Informed recommendations
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System Identification

Inferring network topology Chm Lo
from voltage and current

phasor measurements e = 7hu Vo

pW

NxT NxN NxT

N: humber of nodes
T: number of samples
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System Identification

* Inferring network topology Ohna Low
from voltage and current

phasor measurements T = Tou Vs

pV

» only a small number of AT NN T
nodes are monitored

N: number of nodes
» measurements are noisy T: number of samples

» Vbus is low rank

»  Ypus Must be sparse

- . K N K
Yous = arg YE%JIVHXN H(V;)us ® 1 )VeC(Y) IR Vec([bus)Hz

st Y e SN |vec(Y)]|, <6
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System Identification

* Inferring network topology Chwva Low

Ibu,s — ybus \;bu,s

from voltage and current
phasor measurements

pV

» only a small number of T Ml Mo

nodes are monitored |
N: humber of nodes

» measurements are noisy T: number of samples

»  Vbus is low rank
»  Ypus Must be sparse

*  Online detection and
localization of events
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smarter, greener, more adaptive and resilient
against climate change and natural disasters
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Smart Buildings

2 “Subtantlal efflc:lecy savmgs left untapped!




Smart Buildings

Solution: deploy analytics applications without a priori
building-specific knowledge across many buildings

comprising already deployed sensor networks

_—




Adaptive Fault-Tolerant Buildings
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Adaptive Fault-Tolerant Buildings

+ Automated point mapping
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Adaptive Fault-Tolerant Buildings

- requires a concrete ontology for sensors, control points, subsystems and
relationships among them
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Adaptive Fault-Tolerant Buildings

- Fault detection and diagnosis, and predictive maintenance algorithms
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Adaptive Fault-Tolerant Buildings

- e.g., rouge zones, sensors drifted out of calibration, mechanical issues,
improper controls

38



Adaptive Fault-Tolerant Buildings

» Sensor fusion for workspace utilization, personalized comfort, and smart
lighting

Image: OccupEye sensor

Image: Comfy, Building Robotics



Adaptive Fault-Tolerant Buildings

- addressing privacy concerns (differential privacy, downsampling, ...
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Smart Cities

A city is a complex system
comprised of a large number of
distributed physical resources

delivering a wide range of services
to citizens
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Smart Cities

A city is a complex system
comprised of a large number of
distributed physical resources
delivering a wide range of services
to citizens

Sensors and real-time analytics are
employed in a smart city to solve
problems in various urban sectors

Buildings I
Farming Manufacturing
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Smart Cities
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active end-nodes

- convex relaxations (SDP or SOCP)
* Probabilistic sizing of city infrastructures
- teletraffic analysis and network calculus
* Planning of city services in the face of uncertainty
- reinforcement learning
* Using real-time analytics to identify problems and inefficiencies in a city
- partial observability and hidden states

* Turning historical data into actionable information for urban planners
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Building Prototype Energy Systems

Campus as a living laboratory!
Deploy

Controlled plug loads
Sub-metering devices

PV cells and inverters

Batteries

Electric cars/bikes

Implement and evaluate

Demand response

Building-to-grid applications
Turning buildings into
already deployed, low-cost
storage options for the grid

Indoor climate control

Smart lighting

Fault detection and diagnosis

System identification
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