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“The 10 warmest years in the 132-year record all have occurred 
since 2000, with the exception of 1998.”
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But even then, energy sector CO2 emissions 
are not on track for a 2°C scenario

To achieve 2°C target 
the energy sector must

be carbon-neutral by 2100 

Paris Agreement pledges
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Monitor, 
Model,

Manage!
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Unprecedented Opportunities

• Aging infrastructure

• New economic and social needs 

• Declining costs of low-carbon and renewable technologies

• Pervasive sensing and control
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Energy Data Collection and Analysis

2010

WeatherDuck

every 10 sec 
temperature 

humidity 
air flow 

acoustic 
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2014

Smart Meters

hourly 
electricity 

consumption

2016

HVAC Sensors
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supply air flow,  
temperature, …

2011

CurrentCost Envi 

every 6 sec 
per phase current
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determine the charge powers
- a non-convex optimization problem solved hours ahead
- precise model of the distribution network (unavailable)
- EV arrival and departure times (unknown)

• Distributed feedback control: let the system solve power flow 
equations
- measure steady-state response using sensors installed at hotspots
- signal congestion using an overlay network connecting sensors to EV 

chargers

eEnergy’13

It is a TCP-like congestion control algorithm!
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Radial Distribution Systems
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Network Utility Maximization Problem:

eEnergy’13

14

chargers in subtree l

proportional fairness

charge power
[Kelly98], [Low99], [Yaïche00]

Control rules are obtained by solving this optimization problem



Master Problem
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Subproblem 1
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…
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Dual Decomposition for 
Distributed Control

eEnergy’13
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Subproblem n
(solved at EV charger n)

…

rate1 raten

EV load

eEnergy’13
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Iteration K, Phase 2

We can accommodate 10 times more EVs  
than the uncontrolled charging scenario!

Dual Decomposition for 
Distributed Control



Open-Source Simulation Software

• Modular design, suitable for defining large-scale simulation scenarios

• Interfaces with optimization software and power flow solvers

• Includes plotting and reporting services

17

Download code 
from GitHub
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Testbed
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Testbed
Three large UC Berkeley campus buildings 
– 117, 109 and 270 zones respectively 
– Buildings had different BMS systems
– 3-6 months of data analyzed

BuildSys’16
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Actual occupancy
Current reheat

scheduleReheat profiles under our 
smarter schedules

Possible reheat energy savings

Saving on Reheat Energy
BuildSys’16

This approach can be readily applied to any 
commercial building with a BMS that archives data
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• electric cars
• solar cells and inverters
• micro wind turbines
• batteries

SpringerBrief ’16

Decentralized control
- substation controller
- balancing zone controllers
- end-nodes

Avoid distribution network problems 
• over- and under-voltage
• overloads
• reverse power flows

30
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Enabling Large-Scale Integration of 
Active End-Nodes
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The Range of Relevant Time Increments in 
Power System Planning and Operation  
Spans 15 Orders of Magnitude!
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PES’17  
ISGT’17

Model Validation
• Inferring the admittance matrix from 

time-synchronized measurements: I = YV
• Sparse recovery techniques Event Detection and Classification

• Data-driven approach
• Candidate events labelled by domain experts
• A library of various events

high-precision, high-sample-rate  
data from many locations

This analytics framework is currently used by 
several power system operators in California
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System Identification 
• Inferring network topology 

from voltage and current 
phasor measurements

‣ only a small number of 
nodes are monitored

‣ measurements are noisy

‣ Vbus is low rank

‣ Ybus must be sparse

• Online detection and 
localization of events

35

N x TN x T N x N

N: number of nodes 
T: number of samples 

Ohm law
Ibus = Ybus Vbus
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smarter, greener, more adaptive and resilient  
against climate change and natural disasters
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Continuous commissioning of buildings is overly costly and does not scale
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“Substantial efficiency savings left untapped!”

Solution: deploy analytics applications without a priori 
building-specific knowledge across many buildings 
comprising already deployed sensor networks
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• Automated point mapping

- requires a concrete ontology for sensors, control points, subsystems and 
relationships among them 

• Fault detection and diagnosis, and predictive maintenance algorithms

- e.g., rouge zones, sensors drifted out of calibration, mechanical issues,  
improper controls

• Sensor fusion for workspace utilization, personalized comfort, and smart 
lighting

- addressing privacy concerns (differential privacy, downsampling, …)

38
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A city is a complex system 
comprised of a large number of 
distributed physical resources 
delivering a wide range of services 
to citizens

Sensors and real-time analytics are 
employed in a smart city to solve 
problems in various urban sectors 

Smart Cities

39

BuildingsTransportEnergy
Urban
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• Optimal control of coupled infrastructures (gas, water, electricity, …) and 
active end-nodes

- convex relaxations (SDP or SOCP)

• Probabilistic sizing of city infrastructures

- teletraffic analysis and network calculus

• Planning of city services in the face of uncertainty

- reinforcement learning

• Using real-time analytics to identify problems and inefficiencies in a city

- partial observability and hidden states

• Turning historical data into actionable information for urban planners

Smart Cities
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Building Prototype Energy Systems

Deploy
• Controlled plug loads
• Sub-metering devices
• PV cells and inverters
• Batteries
• Electric cars/bikes 

Implement and evaluate
• Demand response
• Building-to-grid applications 

Turning buildings into  
already deployed, low-cost  
storage options for the grid

• Indoor climate control
• Smart lighting
• Fault detection and diagnosis
• System identification

41

Campus as a living laboratory!
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