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ABSTRACT
We examine the robustness of machine learning-based distribution
system state estimation (DSSE) techniques to a class of adversarial
attacks, known as the black-box evasion attack. In these attacks,
the attacker manipulates real-time measurements from sensors
installed in the distribution grid by adding carefully crafted per-
turbations to diminish the accuracy of DSSE. We devise a stealthy
attack based on the Fast Gradient Sign Method (FGSM), dubbed
Sneaky-FGSM, by analyzing the statistical properties of real-time
measurements and adding perturbations accordingly. Using sim-
ulation on a standard test distribution system, we show that this
attack would remain largely unidentified and the error introduced
in the DSSE process could propagate to a voltage control scheme
that takes the DSSE result as input. Our result suggests that in-
corporating machine learning models in DSSE is a double-edged
sword and calls for more research to ensure the robustness of these
models to adversarial samples.
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1 INTRODUCTION
Real-time state estimation plays a pivotal role in realizing the vision
of efficient, nimble, and resilient electric power infrastructure as it
underpins various monitoring and control applications, from fault
detection to Volt/VAR optimization. Historically, state estimation
was primarily used in the power transmission system to determine
its state, e.g., bus voltages or branch currents, from incomplete or
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noisymeasurements. Thesemeasurements can be obtained from the
supervisory control and data acquisition (SCADA) system or phasor
measurement units (PMUs) installed at specific nodes in the net-
work. But in the past decade, the growing adoption of distributed
energy resources (DER) and controllable loads has caused wide
fluctuations in voltage and reverse flow in the power distribution
system, making it imperative to increase visibility in low-voltage
feeders and employ feedback control schemes to maintain its re-
liable operation. Since real-time state estimation supports these
applications, it is anticipated that it will be increasingly incorpo-
rated in distribution system operation practices [46].

The state estimation problem can be formulated as a system of
nonlinear equations, which is typically solved as a weighted least-
squares (WLS) problem [41] in the polar or rectangular coordinate
system. However, WLS-based estimators do not yield sufficiently
accurate results in the DSSE problem for several reasons. First, un-
like the transmission system, real-time measurements are scarce
in the distribution system as there is little instrumentation beyond
the substation [18]. This results in fewer measurements than un-
knowns, rendering WLS-based estimators ineffective [69]. Second,
a typical distribution system contains numerous unbalanced three-
phase lines. These lines are shorter than transmission lines and
have a higher r/x ratio. This could lead to ill-conditioned Jacobian
and gain matrices, affecting the convergence rate of WLS-based
state estimation techniques [7]. Finally, WLS-based state estimation
techniques rely on the electrical system model, which encodes the
operational structure of the network and parameters of distribu-
tion lines and transformers. This model is not available in most
distribution systems today [8]. Inspired by the success of machine
learning (ML) techniques in approximating complex physics-based
model, several attempts have been made to solve DSSE by taking
a data-driven approach or a hybrid approach that combines ML
models with electrical model-based, static or dynamic state estima-
tion techniques, such as WLS and Kalman filter [24]. In particular,
neural networks trained on historical measurements or simulation
data have been used to estimate the system state from existing
measurements [11, 60, 67, 68], initialize the Gauss-Newton method
so it enjoys quadratic convergence to the true latent state of the
system [65], or generate pseudo-measurements to compensate the
lack of sufficient measurements when solving DSSE using tradi-
tional model-based techniques [38]. More recently, physics-aware
neural networks [66] have been utilized to increase the accuracy
of DSSE by pruning connections in the neural network according
to the distribution system model. These studies are unanimous in
their conclusion that ML-based state estimators are superior to
traditional model-based techniques, which are computationally ex-
pensive and often incapable of capturing the nonlinear relationship
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between input and output, hence they cannot effectively deal with
increased variability and uncertainty in distribution networks.

Despite the vast literature on data-driven and hybrid state esti-
mation techniques, the previous work does not investigate whether
these techniques are robust to adversarial samples [22] that re-
semble normal sensor data. This is important because adversarial
attacks have been shown to greatly degrade the performance of
classification and regression models in other domains [17, 40, 64].
Since DSSE is essentially a regression problem, these attacks can
reduce the state estimation accuracy and subsequently the perfor-
mance of the controller that relies on the DSSE result. For example,
the attacker might be able to create power quality issues by mis-
leading the operator into taking actions that exacerbate over or
under-voltage problems. Such an attack will be detrimental if it is
not detected by the bad data detection (BDD) mechanism that is
commonly adopted to protect the state estimation process. The real-
world application of the newly developed data-driven and hybrid
DSSE techniques requires assessing the vulnerability of the under-
lying machine learning model(s), and developing threat models and
mitigation strategies, which are currently missing. This observation
serves as the key motivation behind our work.

To investigate the robustness of ML-based state estimation tech-
niques to adversarial samples, we consider a powerful technique,
called Stacked ResNetD, from the previous work [11]. It uses an
ensemble of dense residual neural networks (ResNet) to map real-
time measurements to the system state. This technique is shown to
outperform several other electrical model-agnostic state estimation
techniques, so we use it as a representative DSSE technique in our
study [11]. We propose a black-box adversarial attack that uses an
arbitrary surrogate model trained on historical data – measurements
and corresponding states – to add carefully crafted perturbations to
the measurements to reduce the accuracy of DSSE. We show that
the standard residual-based BDD mechanism fails to flag the modi-
fied measurements as bad data in the majority of cases. We then
devise an even stealthier version of this attack in which the attacker
uses statistical properties of sensor data to selectively apply the
perturbations. To demonstrate the damage that could be inflicted,
we assess the impact of both attacks on a voltage control scheme
that relies on the DSSE result. Our contribution is threefold:
• We present a black-box evasion attack against a state-of-the-
art DSSE technique that uses an ensemble of residual neural
networks to estimate the system state. We then investigate
transferability of this attack to two other data-driven state
estimators based on a convolutional neural network and the
K-nearest neighbors (KNN) algorithm. Using surrogate mod-
els that are different from the victim state estimation model,
we argue that the attacker neither needs the knowledge of
the ML model used in DSSE (as in white-box attacks), nor
any information about the distribution system model.
• We devise a stealthier evasion attack, namely Sneaky-FGSM,
by applying perturbations according to the variance of data
generated by the respective sensors. We show that this novel
attack can further reduce the accuracy of DSSE at a lower
BDD detection rate.
• We conduct a simulation study on an extended version of the
IEEE 33-bus test system, in which the IEEE European low-
voltage system is used to model the secondary networks and

real load data is used to represent the household demands, to
investigate how the error introduced in the state estimation
process propagates and affects a voltage control scheme that
relies on the DSSE output.

To our knowledge, this is the first work that investigates the adver-
sarial robustness of data-driven state estimators and analyzes the
impact of adversarial attacks on the distribution system control pro-
cess. Our findings suggest that ML-based DSSE techniques are not
presently robust to carefully crafted adversarial examples and more
research is warranted to address their vulnerability before they can
be incorporated into distribution system operation practices.

2 RELATEDWORK
Machine learning-based state estimation techniques garnered at-
tention in recent years as they were shown to be superior to tra-
ditional static and dynamic state estimation techniques, such as
WLS and Kalman filter [46], especially in distribution networks
with high DER penetration. For example, real-time distribution
system state estimators based on various deep neural network ar-
chitectures [6, 67, 68], long short-term memory (LSTM) [5], and
KNN [60] were proposed in the literature. An ML-based state es-
timator that takes advantage of an ensemble of ResNets [11] has
been recently shown to outperform several other ML-based tech-
niques, including multilayer perceptron (MLP) and convolutional
neural network (CNN). A physics-aware neural network is proposed
for DSSE in [66], where the knowledge of the physical system is
utilized to prune the dense neural network, reducing overfitting.
Several studies use a hybrid approach where an ML model is com-
bined with a traditional approach (such as WLS and least absolute
value) [12, 13, 65]. The fundamental concept underlying these hy-
brid approaches is to leverage the ML model to map available mea-
surements or historical data to the neighborhood of the true latent
state. These approximate state values are then used as a starting
point for iterative methods, such as the Gauss-Newton method.

2.1 Adversarial Attacks
Adversarial machine learning studies how to fool machine learning
models by providing malicious inputs during training or test. The
two most common types of adversarial attack algorithms are:
• Evasion Attacks:Attacks in this category add carefully crafted
perturbations to the benign samples in the test set with the
goal of producing erroneous output, thereby reducing the
accuracy of the machine learning model during deployment.
Popular evasion attacks include FGSM [22], Basic Iterative
Method (BIM) [28], Projected Gradient Descent (PGD) [36],
DeepFool [42], and Carlini–Wagner Attack (C&W) [14].
• Poisoning Attacks: These attacks affect themodel by targeting
its availability or integrity. In the former case, the attacker
injects malicious data into the training set to corrupt the
learned model [43, 44, 63], whereas in the latter case, the
adversary creates a backdoor into the learning model using
poisoning strategies [15].

The above-listed attack strategies can be designed using awhite-box
or black-box approach. During a white-box attack, the adversary
uses the knowledge of the victim ML model, including its archi-
tecture, hyperparameter values, and weights associated with the
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connections, to generate adversarial samples [14, 20, 42]. In con-
trast, in a black-box attack, the adversary has only query access
to the victim model and no prior knowledge of the victim model’s
architecture; therefore, it uses a surrogate model to generate adver-
sarial samples [23, 26, 27]. Earlier studies have demonstrated that
due to the transferability of adversarial samples, it is possible to
devise black-box attacks by training surrogate models that differ
from the victim model [45]. Our work is inspired by this result.

2.2 False Data Injection Attacks
False data injection attacks (FDIAs) are a major threat to cyber-
physical systems that contain a sense and control loop, such as the
smart grid [29, 30].While both evasion attacks and FDIAmanipulate
the sensor data, there are fundamental differences between the two
in terms of attack formation strategies and threat models. To launch
an effective FDIA that bypasses the BDD mechanism, the adversary
typically needs to have access to the topology and configuration
of the grid or the measurement matrix, in addition to the data-
overwrite access [33, 34, 62]. However, only data-overwrite access
is sufficient to launch black-box adversarial attacks. Furthermore,
adversarial samples crafted by models that capture hidden features
and trends in data have the property of transferability, which allows
them to mislead not only a specific target model but also other
models even if their architectures differ greatly [45]. To the best of
our knowledge, no such evidence regarding transferability of FDIA
has been provided in the literature.

2.3 Vulnerability to Attacks in Smart Grid
We now review the related work on analyzing the robustness of
ML models that are used in different power system applications.
Eklas et al. [25] study the application of machine learning in the
smart grid and the emerging security concerns associated with the
adoption of this technology. The authors have reviewed recent cyber
attacks against electric grid infrastructures that took place around
the world and were caused by compromised software, malicious
operating systems, or the presence of intruders. To analyze security
and vulnerability of learning algorithms used in the power system,
Chen et al. [16] propose an evasion attack algorithm that works
in a similar manner to FGSM. They examined the efficacy of the
proposed attack against a neural network-based power quality
disturbance classifier and an RNN-based load forecasting model.

While various ML techniques have been proposed to detect
FDIA [48, 54, 58, 61], few papers examined robustness and secu-
rity issues that arise from the use of machine learning techniques.
The impact of two adversarial attacks, namely Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) and Jacobian-based
Saliency Map Attack (JSMA), on an MLP-based false data detection
technique was analyzed in [48]. Joint adversarial examples and false
data injection attacks (AFDIAs) that are able to fool both BDD and
neural attack detector (NAD) mechanisms protecting the DC state
estimation process have been proposed in [54]. While white-box
AFDIAs show promise in bypassing the detection mechanisms, the
performance of black-box AFDIAs is subpar. Another recent study
uncovers the inefficacy of BDD and NAD mechanisms in DC state
estimation in the presence of white-box targeted FDIAs [53].

Turning to data-driven state estimation approaches, ANN-based
state estimators have been found vulnerable to FDIAs. For exam-
ple, optimization techniques based on differential evolution and
sequential least-square quadratic programming have been proposed
in [31, 32] to construct attack vectors that can fool the BDD mech-
anism and affect an MLP-based state estimator. More recently, a
forward-derivative-based adversarial attack on a neural network-
based state estimator is proposed in [51]. However, the authors do
not consider the existence of any bad data detection mechanism;
thus, it is unclear how effective this attack strategy is when state
estimation is safeguarded by the BDD mechanism. We note that all
these attacks are white-box, i.e., the attacker is assumed to have the
full knowledge of the power grid’s structure and model, as well as
the architecture and parameters of the ANN used for DSSE, which
is a strong assumption in some real-world applications.

The closest work to ours is [10] and [52], where data-driven
approaches are used to generate black-box attacks against electrical
model-based state estimators. Specifically, a robust linear regression
model has been proposed in [52] to generate stealthy attack vectors
that can fool the residual-based BDD mechanism integrated with
the DC state estimation technique in the black-box setting. For AC
state estimation, deep adversarial networks have been used for the
first time in [10] to craft a stealthy black-box adversarial attack
against power system state estimation. The authors used the vanilla
FGSM algorithm to create the attack vectors against an AC-PSSE
algorithm that estimates states by solving the WLS optimization.
In contrast to these recent studies, we analyze the vulnerability of
data-driven DSSE approaches to adversarial attacks crafted using
surrogate neural networks under the black-box assumption. More-
over, we propose the novel Sneaky-FGSM algorithm, which is able
to induce higher measurement noise without getting detected by
the conventional BDD mechanism. Lastly, we address a major limi-
tation of the existing literature [10, 51, 54] by analyzing the impact
of the proposed attacks on voltage regulation schemes, which is an
important control application that relies on the DSSE result.

3 PRELIMINARIES
We give a brief overview of the fundamental concepts that form the
foundation of our work. Specifically, we provide the mathematical
formulation of DSSE and present a widely used BDD mechanism
to protect DSSE. Then, we discuss a rule-based voltage regulation
scheme that relies on the DSSE output.

3.1 DSSE Problem Formulation
State estimation is the problem of identifying state variables, e.g.,
bus voltage magnitudes and phase angles, from the available mea-
surements in a power system [35]. Suppose ℎ(·) is the non-linear
function that relates state variables, denoted by vector x ∈ C𝑛
(where C is the set of complex numbers), to a vector collecting field
measurements z ∈ C𝑚 . We have

z = ℎ(x) + b, (1)

where b ∈ C𝑚 is the measurement error. Note that ℎ(·) depends on
the real-time operational structure and parameters of the distribu-
tion system model. To obtain the system state vector of size 𝑛 from
a set of𝑚 independent measurements, a WLS estimator minimizes
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the following objective function [7]:

min
𝑥

𝐽 (x) =
𝑚∑︁
𝑖=1
(𝑧𝑖 − ℎ𝑖 (x))2 /𝑅𝑖𝑖 (2)

where R is a diagonal matrix, called the covariance matrix of mea-
surement errors (b) and given by:

R =


𝜎21 0 · · · 0

0 𝜎22
. . .

.

.

.

.

.

.
. . .

. . . 0
0 · · · 0 𝜎2𝑚


Here, 𝜎2

𝑘
is the variance of the 𝑘𝑡ℎ measurement from the measure-

ment vector z. We can write (2) in vector/matrix form as follows:

min
𝑥
[z − ℎ(x)]⊤ R−1 [z − ℎ(x)] (3)

Due to the high computational overhead and possibility of getting
stuck in local minima [33], ℎ(·) is often linearized:

ℎ(x) = Hx (4)

Here, H is the measurement matrix and typically defined as the
Jacobian matrix of ℎ(·).

H = 𝛿ℎ(x)/𝛿x
By combining (3) and (4), we derive the estimated state as:

x̂ = argmin
x
[z − Hx]⊤ R−1 [z − Hx] (5)

We note that linearization of ℎ(·) does not work well in distribution
grids, so iterative methods, such as Gauss–Newton, can be used
instead to estimate the state starting from some initial point.

By adding pseudo-measurements obtained from historical data
to field measurements, DSSE is usually solved as an overdetermined
problem, where we have fewer states than the measurements, i.e.,
𝑛 < 𝑚. In this case, the closed-form solution for the maximum
likelihood estimate of x can be derived as follows [57]:

x̂ =
(
H⊤WH

)−1 H⊤Wz (6)

As the reliability of estimated states is heavily dependent on the
accuracy of measurements, distribution system operators often
deploy a residual-based BDD mechanism to safeguard the state esti-
mation procedure. Specifically, the measurement error, e is defined
as the difference between actual measurements (z) and estimated
measurements (ẑ), i.e., z − ẑ, where ẑ = Hx̂.

The chi-square test is a convenient strategy to identify the pres-
ence of bad data [7]. From (2), the residual can be rewritten as:

𝐽 (x) =
𝑚∑︁
𝑖=1

𝑒2
𝑖

𝑅𝑖𝑖
=

𝑚∑︁
𝑖=1

(
𝑒𝑖

𝜎𝑖

)2
(7)

Notice that Equation (7) is of the form 𝑦 =
∑𝑑
𝑖=1 𝜒

2, which corre-
sponds to the chi-squared distribution with 𝑑 degrees of freedom.
Since it is assumed that𝑚 > 𝑛, at most (𝑚−𝑛) of the measurement
residuals will be linearly independent, resulting in 𝑑 =𝑚 − 𝑛. To
detect the presence of bad (measurement) data, 𝐽 (𝑥) is compared
to the critical chi-square value at the degree of freedom 𝑑 , and a
pre-specified level of significance 𝛼 . If 𝐽 (𝑥) < 𝜒2

𝑑,𝛼
, then the esti-

mated state, i.e., x̂, can be trusted. Otherwise, it is assumed that
the measurement contains bad data. Upon detecting bad data, the

distribution system operator (DSO) may either discard the esti-
mated state and replace it by a previous state estimate or try to
identify the source of bad data, eliminate the bad measurement(s),
and re-estimate the current state.

3.2 Voltage Regulation using DSSE Result
A voltage limit violation in a power distribution system occurs
when the voltage level exceeds or drops below the limit set by the
utility company or some regulatory body. This can happen due to
various reasons, such as equipment failure, an increase in load, or a
fault on the distribution lines. These violations not only affect the
stability of the power grid but also can cause damage to equipment
(both at the grid end and consumer end), and power outages. To
prevent these calamities, voltage control devices, such as capacitor
banks, regulators, and on-load tap changers (OLTCs), are used to
quickly respond to voltage fluctuations.

Due to high installation costs, distribution-level PMUs (D-PMUs)
are not currently deployed at each node of a distribution system,
despite their ability to provide highly precise and frequent data [50].
Therefore, estimated states from DSSE are often used instead of
the measurements when they are missing to detect voltage limit
violations [21] and perform Volt/VAR optimization (VVO) [37]. In
this context, an adversarial attack launched against the data-driven
state estimator would eventually impact these control decisions.

The most prevalent VVO approach is the SCADA-controlled VVO,
which is a rule-based strategy where voltage and VAR control de-
vices, such as voltage regulators and capacitor banks, are controlled
based on some pre-defined set of rules [47]. The SCADA-controlled
VVO is often studied as two independent problems, VAR optimiza-
tion and Voltage control [47]. For this study, we focus on the voltage
control part of the SCADA-controlled VVO mechanism which aims
to maintain acceptable voltage levels at all points along the distri-
bution feeder under all load conditions by controlling tap changers
and/or voltage regulators [3].

4 THREAT MODEL
We choose the Stacked ResNetD state estimator as the victim model,
which is a strong baseline among electrical model-agnostic state
estimation techniques. We conduct our experiments under the as-
sumption that the attacker has no knowledge of the architecture of
the victim model, hence it is a black-box attack. Nevertheless, the
attacker is assumed to have (a) read and write access to the real-
time measurement of all sensors, z, and (b) read access to the victim
model’s output, x, which can be paired with the corresponding
measurement to construct the training dataset,

{(
ztraini , xtraini

)}
,

for the surrogate model 𝑓 , described in Algorithm 1. Given these
assumptions, the primary attack point would be the utility data
center where the state estimation (victim) model is run and sensor
data are stored. The attacker can be an insider (e.g., a malicious
operator), or an intruder hacking into the server, using compro-
mised software installed on the server that hosts the victim model,
or gaining access to the DSO’s authorized user account. The PMU
networks and utility data centers have been found vulnerable to
cyber attacks in several recent studies [56, 59], indicating a high
risk of the presence of such adversaries, lending credence to this
threat model.
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Figure 1: Stacked ResNetD architecture

The goal of an attacker is to distort the measurements in a way
that significantly alters the state estimation result and at the same
time remains undetected. Hence, in the second phase of experimen-
tation, we investigate the stealthiness of the proposed attack to the
conventional BDD mechanism. Upon analyzing the results from
the BDD mechanism, we propose a new attack strategy, namely
Sneaky-FGSM, which is able to induce noise in a stealthier fashion.

5 METHODOLOGY
We describe the implementation of DSSE and BDD, present the pro-
posed black-box evasion attack strategy, and provide more details
about the voltage control scheme that relies on the DSSE result.

5.1 DSSE and BDD Techniques
While it is possible to train a variety of ML models and incorporate
them in DSSE, instead of introducing yet another architecture and
identifying its vulnerabilities, we use a state-of-the-art ensemble
learning model, namely Stacked ResNetD, which has been proposed
in [11] and shown to outperform several other deep neural net-
works, as our victim model. Previous work has shown that ensem-
ble learning models have enhanced adversarial robustness [49, 55].
This together with the strong performance of Stacked ResNetD
motivates our choice of the victim model.

The term Stacked ResNetD refers to an ensemble learning model
consisting of 𝐵 base learners and a meta-learner. In this work, we
choose the value of 𝐵 by trial and error, i.e., empirically evaluating
DSSE for different values of 𝐵 on our test network and choosing
the one that yields the lowest error. We employ three base learners
(𝐵=3), each of which is a 13-layer dense ResNet model, trained to
estimate states from the measurements. Figure 1 shows the archi-
tecture of the Stacked ResNetD model. The output states produced
by the base learners are combined together and fed into the meta-
learner. A multivariate linear regressor (MLR) is employed as the
meta-learner. Finally, we use historical measurement-state pairs,
(z, x), to train the ensemble model.

Detecting bad measurements is extremely valuable for the state
estimation procedure and is typically implemented as a residual-
based method. The intuition behind the residual-based BDD ap-
proach is that the residual, 𝐽 (𝑥), determined after the state esti-
mator algorithm converges, will be minimal if the measurement
set contains no bad data [57]. We implement the residual-based

BDD mechanism described in Section 3.1 with level of significance
𝛼=0.05, and degrees of freedom 𝑑=48.

5.2 Attack Strategy
Vanilla FGSM. We hypothesize that the adversary, being un-

aware of the victim model’s architecture, can choose any suitable
neural network as the surrogate model to produce the black-box
attack. To test this hypothesis, we use two surrogate models and
investigate their effectiveness against a fixed victim model (i.e.,
Stacked ResNetD) that is different from them. The first surrogate
model is an MLP that consists of 5 dense layers. The second one
is the CNN model proposed in [11] consisting of 3 convolutional
layers and 3 dense layers. For both models, we use ReLU as the acti-
vation function and mean absolute error (MAE) as the loss function.
Note that from the vast ocean of ML models, the adversary is free
to choose any suitable surrogate, meaning that there are hundreds
of possible ways to affect the data-driven DSSE approaches.

Our aim is to investigate how black-box evasion attacks could
mislead distribution network control systems by affecting the data-
driven state estimation process. While most evasion attacks are
designed to fool classifiers, FGSM and its iterative versions, in
particular, BIM and PGD introduced in Section 2.1, can be applied
against regression models as well. Since FGSM is the foundation of
the other two attacks and all of these three attack strategies work in
a similar manner [70], we choose this as our primary attack strategy.
For the rest of this paper, we refer to the standard black-box FGSM,
presented in Algorithm 1, as vanilla FGSM to distinguish it from
the novel Sneaky-FGSM discussed below.

Sneaky-FGSM. From Equation (7), it can be seen that the tol-
erance of the residual-based BDD mechanism is determined by
the variance of measurement data. Thus, intuitively, perturbing
the measurements that do not show much variance increases the
chance of being detected by the BDD mechanism. Based on this in-
sight, we formulate the novel Sneaky-FGSM attack strategy, which
improves the vanilla FGSM attack by perturbing only the measure-
ments with high variance to increase the stealthiness of the attack.
The proposed Sneaky-FGSM approach is presented in Algorithm 2.

Power system measurement data exhibits seasonality and tem-
poral variation. Thus, the data used in the variance calculation step
plays an important role in correctly detecting bad measurements.
For example, taking into account measurements collected over one
year would result in higher variance (hence a less stringent BDD
process) than considering measurements collected over a week for
this calculation. In this study, we use the daily variance of measure-
ments, i.e., we calculate the variance of a batch of data generated
over 24 hours, while implementing the BDD mechanism.1

On any day 𝐷 , an adversary with access to the measurement
data can readily estimate the daily variance of each of the𝑚 mea-
surements, {𝜎2

𝑘
}𝑚
𝑘=1, by calculating the daily variance using the

measurements from the previous day, 𝐷 − 1, or using a batch of
latest data samples. These estimates will be used by the adversary to
identify which measurements have an exceptionally low variance,
and therefore, should not be perturbed in the stealthy attack.

1In practice, the daily variance data can be estimated using historical measurements
from the same day in prior year(s) or the previous day.
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Algorithm 1 Vanilla FGSM Attack
1: Inputs:

Training data,
{(
ztraini , xtraini

)}
𝑖=1,· · · ,𝑁𝑡𝑟𝑎𝑖𝑛

Maximum training iteration,𝑚𝑎𝑥𝐼𝑡𝑒𝑟

Clean data sample at timestamp 𝑡 , (zt, xt)
2: Output:

Adversarial sample at timestamp 𝑡 , (z′t, x
′
t)

3: Initialize:
\0 with small random values
Surrogate model, 𝑓\ with appropriate loss function, 𝐿

⊲ Training the surrogate model 𝑓 , parameterized by \
4: for 𝑗 = 0, 1, · · · ,𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do

5: 𝜽 j+1 ← 𝜽 j − 𝛼∇𝜽 j

[
1

𝑁𝑡𝑟𝑎𝑖𝑛

∑
𝑖
𝐿

(
𝑓 (ztraini ;𝜽 𝑗 ), xtraini

)]
6: end for ⊲ 𝛼 is the learning rate

⊲ Calculating gradient of the loss w.r.t. the input, zt
7: 𝜹zt = ∇zt [𝐿 (𝑓 (zt;𝜽 ), xt)]
8: z′t = zt + 𝜖 · sign

(
𝜹zt

)
⊲ 𝜖 is a hyperparameter (scalar)

9: return (z′t, x
′
t) ⊲ Return the adversarial sample

In this experiment, we use the household power consumption
dataset (described later in Section 6.1), in which reactive power
consumption (𝑄) exhibits exceptionally low variance (less than
1). In light of this, we design the first version of Sneaky-FGSM
by perturbing all measurements except the 𝑄 measurements. We
found that using this attack it is possible to fool the BDDmechanism
more frequently than the vanilla FGSM; however, perturbing the
𝑄 measurements in addition to the other measurements would
increase the BDD detection rate. This successful attempt led to a
more general version of the proposed Sneaky-FGSM, where we do
not perturb a particular measurement z𝑡 [𝑘] if its variance, 𝜎2𝑡 [𝑘],
is lower than a pre-defined threshold value. The threshold value
that is being used to determine whether a variance value is ‘low’ or
not, is a hyperparameter that is tuned according to the attacker’s
intent. Using a higher threshold value will produce a stealthier but
less effective attack and vice versa. In this experiment, we define
the thresholds for power consumption measurements as follows:
𝜐1 = · · · = 𝜐𝑚 = 1 to avoid adding noise to 𝑄 measurements and
perhaps other measurements that are intrinsically low variance.

In Line 6, we define a binary vector, select ∈ {0, 1}𝑚 , which
holds 0 at index 𝑘 if the variance of the 𝑘th measurement of the
data sample zt is below the predefined threshold (i.e., 𝜎2𝑡 [𝑘] < 𝜐𝑘 ),
and 1 otherwise. Finally, in Line 9, we modify the perturbation
vector obtained from vanilla FGSM (i.e., sign(𝜹zi )) by calculating
its Hadamard (element-wise) product with select.

5.3 Voltage Regulation under Adversarial
Attack

We implement the rule-based voltage regulation strategy that relies
on DSSE and was previously outlined in Section 3.2. In this scheme,
control rules are generally determined based on operational con-
straints. An example VAR optimization rule can be– “switch on the
capacitor bank, if the power factor is less than 0.95” and an example
of the voltage control rule can be– “if voltage at bus 𝑛 drops below
or goes above the pre-defined setpoint, change the OLTC tap posi-
tion accordingly” [47]. In this study, we implement the rule-based

Algorithm 2 Sneaky-FGSM Attack
1: Inputs:

Training data,
{(
ztraini , xtraini

)}
𝑖=1,· · · ,𝑁𝑡𝑟𝑎𝑖𝑛

Maximum training iteration,𝑚𝑎𝑥𝐼𝑡𝑒𝑟

Clean data sample at timestamp 𝑡 , (zt, xt)
2: Output:

Adversarial sample at timestamp 𝑡 , (z′t, x
′
t)

3: Train the surrogate model 𝑓 parameterized by 𝜽 , following the
steps described in Algorithm 1 (Line 4 to 6).

4: Define theminimum thresholds, [𝜐1, 𝜐2, ..., 𝜐𝑚], for the variance
of measurements

5: Define the vector, 𝑠𝑒𝑙𝑒𝑐𝑡 , of size𝑚 as follows:

select[𝑘] =
{

0 if 𝜎2𝑡 [𝑘] < 𝜐𝑘
1 otherwise

⊲ Calculating gradient of the loss w.r.t. the input, zt
6: 𝜹zt = ∇zt [𝐿 (𝑓 (zt;𝜽 ), xt)]
7: S = select ⊙ sign

(
𝜹zt

)
8: z′t = zt + 𝜖 · S ⊲ 𝜖 is a hyperparameter (scalar)
9: return (z′t, x

′
t)

voltage control strategy by installing an OLTC and setting up a
voltage control rule similar to the example we gave for the voltage
control rule. Detailed analysis of this experimentation is presented
in Section 7.3.

6 EXPERIMENTAL SETUP
This section describes the experimental setting that we used to
study the adversarial vulnerability of the Stacked ResNetD state
estimator.

6.1 Test Case
Our test system is structurally similar to the customized IEEE 33-
bus test system presented in [24]. Specifically, we use the 33-bus
system [9] as the primary distribution network and the IEEE Euro-
pean low voltage test feeder [2] to model the secondary networks.
We assume each of the primary buses, except the first one, is con-
nected to a low-voltage feeder, representing the secondary network.
Figure 2 shows one of the low-voltage feeders that originates from
Bus 25. Other low-voltage feeders are not depicted in this figure.

Each secondary feeder supplies 55 single-phase loads. To repre-
sent these loads, we adopt the Multifamily Residential Electricity
Dataset (MFRED) [39], which contains daily load profile of 390
US apartments with 15-minute resolution over a 12 month period
(January 2019 to December 2019). The loads are grouped into 26
apartment groups as per the recommended data aggregation stan-
dard for publishing utility data in the State of New York [1]. Thus,
each of the apartment groups contains the average real and reactive
power consumption of 15 apartments.

To simulate a real-world setting, we add Gaussian noise with
standard deviation of 1%, 2%, · · · , 10% to each of the 26 household
load data to generate 286 distinct apartment load data including the
original 26 households. This way, 500 hypothetical buildings are
created, each containing 1 to 10 apartments chosen randomly from
the 286 apartments. We determine the suitable aggregation level at
each low-voltage bus using the network data provided in [9]. More
specifically, we randomly select buildings and connect them to each
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Figure 2: Single-line diagram of the customized IEEE 33-bus
test system. Node 25 shows the IEEE European low-voltage
system, which is connected to each of the primary nodes.

secondary bus until the loads in the low-voltage network under
each primary bus add up to the load given in the 33-bus system
data sheet. Finally, we run the AC power flow analysis using the
Open Distribution Simulator Software (OpenDSS) [19] to generate
the training and test datasets for the ML models. We note that the
training dataset can be generated in a similar fashion in the real-
world setting, i.e., by solving the power flow equations to obtain
the system states using historical load and generation data [65].

6.2 Data Preparation & Simulation
At a given time 𝑡 , the input to the state estimator is the real-time
measurements collected by vector zt, and the output is the system
state, xt. In defining measurements and states, we use the conven-
tional approach [46] where the state variables are the bus voltage
phasors, denoted by 𝑥 = [v1, v2, · · · , vb, 𝜽 1, 𝜽 2, · · · , 𝜽𝑏 ], with 𝑏 be-
ing the number of buses that do not have D-PMU installed. Here,
vi and 𝜽 𝑖 represent the vectors containing the three-phase voltage
magnitudes and phase angles of bus 𝑖 , respectively. Any combina-
tion of redundant network data (i.e., bus voltage phasors, real and
reactive power consumption, branch flows) can be considered as
the measurement for the DSSE process. For this study, we assume
all load buses in the secondary distribution network are equipped
with smart meters providing real and reactive power consumption
data every 15 minutes. We aggregate the smart meter data from all
load buses in a secondary network, without accounting for losses,
to produce the real and reactive power consumption at the pri-
mary bus, which are treated as pseudo-measurements. Thus, the
measurement vector contains three-phase real and reactive power
consumption at each of the primary load buses, and three-phase
voltage magnitudes and phase angles of buses equipped with D-
PMUs. We install six D-PMUs since this level of observability led to
reasonable state estimation performance in [24]. Figure 2 shows the
placement of the D-PMUs that collect the voltage phasor measure-
ment data. One D-PMU is installed at the substation (Bus 1). The
remaining D-PMUs are installed at the end of the primary feeders
and one in the middle of the longest feeder to ensure system-wide

observability. Note that determining the optimal placement of mea-
surement devices, such as D-PMUs, is outside the scope of this
work, so we just tried one reasonable sensor placement strategy.

Treating the first bus as the slack bus, we have 32 load buses
in our primary distribution system. Therefore, we have 32 × 3 × 2
pseudo-measurements for real and reactive power consumption at
these buses: (P,Q). From the buses equipped with a D-PMU, we
have 6 × 3 voltage magnitude measurements. Thus, the input mea-
surement vector is of size 210 × 1. Excluding the D-PMU-installed
buses, we have 27 buses that comprise the system state; thus, the
state vector is of size 162 × 1.

We consider theOpenDSS simulation results obtained for the first
half of every month to train the victim model. Since the dataset has
15−minute resolution, we have a total of 17280 training samples (i.e.,
96 instances from each day). To form the test dataset, we randomly
choose the load data from three consecutive days of each month
and obtain the corresponding OpenDSS simulation result. Thus, we
generate 3456 instances of test samples, grouped in 12 groups of
288 consecutive measurements (i.e., 3 consecutive days from each
month × 96 samples from each day) that are evenly distributed over
the one-year time period. The remaining samples, pertaining to
12 days in the second half of every month, are used to train the
surrogate model.

6.3 Evaluation Criteria
We use the following measures to evaluate the performance of the
ML-based DSSE technique and the voltage control scheme under
normal operating conditions and in the presence of the black-box
evasion attack.

State estimation accuracy. To evaluate the performance of
the Stacked ResNetD state estimator we use the root-mean-square
error (RMSE) defined as:

𝑅𝑀𝑆𝐸 =

√√√
1

𝑇 · 𝑛

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

(
𝑥𝑡
𝑖
− 𝑥𝑡

𝑖

)2
Here, 𝑛 is the total number of estimated states,𝑇 is the total number
of test samples, and 𝑥𝑡

𝑖
and 𝑥𝑡

𝑖
represent actual and predicted states,

respectively.

Voltage violation detection accuracy. Detecting voltage limit
violations is the first step of voltage regulation, which is crucial to
ensure the reliable operation of the distribution system. To analyze
the impact of the black-box FGSM attack on the ability to detect
voltage limit violations using the estimated state, we set the accept-
able voltage range as ±5% of the nominal voltage level. We remark
that the optimal acceptable range varies from system to system.
We followed the range specified for the Range A service voltage in
the American national standard for utilization voltage regulation
(ANSI C84.1) [4].

Impact on the voltage regulation scheme. Controlling voltage
control devices based on an inaccurate state estimation result may
lead to one of the three unfavorable scenarios described below.
We use the number of unnecessary tap change operations and the
amount of voltage limit violations (including both over or under-
voltage incidents) at the selected bus as our performance measures.



e-Energy ’23, June 20–23, 2023, Orlando, FL, USA Afia Afrin and Omid Ardakanian

Figure 3: Increase in the state estimation error under the
black-box vanilla FGSM attack.

Scenario 1 (Increased tap operations). This occurs when there
is a false positive: even though the bus voltage is within the specified
range, unnecessary voltage control operations (such as OLTC tap
changes) are performed due to the error in the state estimation
result. This increases wear and tear on voltage regulation devices,
reducing their lifetime..

Scenario 2 (Increased over-voltage incidents). It may occur
in two different ways: (a) when the bus voltage is above the upper
threshold but it does not get detected because of the erroneous state
estimation result (i.e., a false negative). In this case, the affected bus
experiences an over-voltage problem, but since it is not detected,
the voltage control scheme does not take any remedial action. Thus,
the over-voltage situation persists; (b) when the bus voltage is
within the specified range but under-voltage is detected (i.e., a
false positive). In this case, the controller sends a command to
increase the OLTC tap position. Due to this unnecessary tap change
operation, the voltage level increases in that bus and possibly other
buses downstream of the OLTC. This may lead to an over-voltage
problem, degrading the power quality.

Scenario 3 (Increased under-voltage incidents). This is the
exact opposite of the previous scenario and may occur in two dif-
ferent ways: (a) when the bus voltage is below the lower threshold
and it does not get detected (i.e., a false negative); (b) when the bus
voltage is within the specified range but over-voltage is detected
(i.e., a false positive). In this case, an unnecessary tap change op-
eration is performed to lower the tap setting. This may lead to an
under-voltage problem, degrading the power quality.

7 EXPERIMENTAL RESULTS
We present the simulation results and evaluate the effectiveness
and stealthiness of the proposed attacks, and analyze the impact of
these attacks on a rule-based voltage regulation scheme.

7.1 Black-box FGSM against the Stacked
ResNetD model

In the first phase of experimentation, we design an attackerwho con-
structs adversarial data samples using the vanilla FGSM presented
in Algorithm 1 and modifies the measurements (z) accordingly. As
discussed in Section 5.2, we employ two different surrogate models,
namely MLP and CNN, to generate the adversarial data samples.
These adversarial samples, when fed to the victim state estimator
model, increase the state estimation error. The induced estimation

(a) Stealthiness of vanilla and
sneaky FGSM attacks crafted using
a CNN surrogate. The horizontal
line is drawn at 5% detection rate.

(b) Frequency plot of the measure-
ment residual ( 𝐽 (x) ) under vanilla and
sneaky FGSM attacks. The vertical line
at 𝐽 (𝑥 ) = 65.17 represents the criti-
cal chi-square value being used as the
threshold for detecting bad data. Note
the y-axis is logarithmic scale.

Figure 4: Performance of the residual-based BDDmechanism
under Vanilla and Sneaky FGSM.

error is directly proportional to the amount of noise added to the
dataset. Figure 3 presents the impact of vanilla FGSM attack on the
Stacked ResNetD state estimator. It can be readily seen that both
surrogate models are successful in misleading the state estimator.
However, the effectiveness of vanilla FGSM depends greatly on the
choice of the surrogate model.

As discussed in Section 5.2, the choice of the surrogate model
rests exclusively with the attacker. We use the CNN surrogate for
the rest of the experiments and later compare the two surrogate
models in Section 7.4. Note that we need to tune the hyperparameter,
𝜖 , according to the choice of the surrogate.

Next, we study whether the conventional (residual-based) BDD
can identify adversarial samples. We craft both vanilla FGSM and
Sneaky-FGSM attacks with different perturbation factors, 𝜖 , and test
the efficacy of the BDD mechanism. We quantify BDD efficacy by
its success rate, which is defined as 𝑁𝑐

𝑁𝑡𝑜𝑡𝑎𝑙
, where 𝑁𝑐 is the number

of bad data samples that get detected by BDD and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total
number of bad data samples used. In this experiment, we used 3456
data samples (i.e., 𝑁𝑡𝑜𝑡𝑎𝑙=3456).

Figure 4a compares the stealthiness of vanilla FGSM and Sneaky-
FGSM attacks. For smaller perturbations (𝜖 ≤ 0.7), the proposed
Sneaky-FGSMmanages to bypass BDDmore often. However, as the
amount of perturbation (𝜖) increases, the measurement residual,
𝐽 (𝑥), starts to exceed the critical chi-square value, resulting in a
level of stealthiness that is comparable with vanilla FGSM. We
conclude that the attacker should carefully tweak 𝜖 to maximize the
impact of the attack while bypassing the BDD mechanism with high
probability. This observation gives rise to an interesting research
question: how much can the attacker affect a control application
that relies on the state estimation result by launching black-box
adversarial attacks while remaining undetected? To address this
question, we analyze the impact of vanilla FGSM and Sneaky-FGSM
attacks that are able to bypass BDD with a high success rate. The
distribution of measurement residuals (𝐽 (𝑥)) under vanilla FGSM
with 𝜖 = 0.11 and Sneaky-FGSM with 𝜖 = 0.3 is shown in Figure 4b.
The chosen 𝜖 values ensure that the corresponding attacks can
bypass the BDD mechanism with at least 95% success rate. Observe
that Sneaky-FGSM is capable of bypassing BDD with a higher 𝜖
value (𝜖 = 0.3) than that of vanilla FGSM (𝜖 = 0.11). In other words,
by utilizing the Sneaky-FGSM algorithm, it is possible to add more
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Figure 5: Distribution of bus voltage magnitude ratio over all
unobserved buses. Note the y-axis is logarithmic scale.

perturbation without being detected (approximately three times
more in our test case), while keeping BDD detection rate the same.
We stick with these 𝜖 values in the following sections.

Figure 5 shows the distribution of two ratios, |𝑉𝑒𝑠𝑡 . ||𝑉𝑡𝑟𝑢𝑒 | and
|𝑉 𝑎𝑑𝑣

𝑒𝑠𝑡 . |
|𝑉𝑡𝑟𝑢𝑒 | ,

which helps compare the effect of vanilla FGSM and Sneaky-FGSM
attacks on the (victim) state estimation model. Here, |𝑉𝑡𝑟𝑢𝑒 | is the
true bus voltage magnitude, |𝑉𝑒𝑠𝑡 . | and |𝑉𝑎𝑑𝑣

𝑒𝑠𝑡 . | are the estimated
voltage magnitudes under normal condition and under adversarial
attack, respectively. As expected, the original Stacked ResNetD
model keeps the ratio very close to 1. However, the vanilla FGSM
attack causes the number of outliers to increase significantly and
with the Sneaky-FGSM attack, the induced estimation error is even
higher. Figure 6 shows a more detailed side-by-side comparison
of the vanilla FGSM and Sneaky-FGSM attacks by presenting the
box and whisker plot of bus voltage magnitude ratios at each of the
unobserved buses, with outliers marked at 5𝑡ℎ and 95𝑡ℎ percentiles.

7.2 Impact on Voltage Limit Violation Detection
We use the voltage phasor magnitudes obtained from the OpenDSS
simulation results using the test dataset to identify the true voltage
limit violation incidents during the simulation period. Sincewe have
3456 test data instances and 27 load buses that are not equipped
with D-PMUs in our test system, there is a total of 3456×27 = 93312
instances where voltage magnitude violation may occur. We define
a binary vector, 𝑉𝐿𝑉 , of size 93312, as follows

VLV[𝑖] =
{

1 if voltage limit violation occurs at instance 𝑖
0 otherwise

In a similar manner, we obtain (a) VLV𝑐𝑙𝑒𝑎𝑛– a binary vector
representing the detection of voltage violation incidents from the
estimated states when clean test data samples are fed to the Stacked
ResNetD model, (b) VLV𝐹𝐺𝑆𝑀– a binary vector representing the
detection of voltage violation incidents from the estimated states
when adversarial test data samples generated by vanilla FGSM
are fed to the Stacked ResNetD model, and (c) VLV𝑠𝑛𝑒𝑎𝑘𝑦𝐹𝐺𝑆𝑀– a
binary vector representing the detection of voltage violation inci-
dents from the estimated states when adversarial test data samples
generated by Sneaky-FGSM are fed to the Stacked ResNetD model.

Each of these three binary vectors is then compared to the true
detection vector (VLV) to analyze the impact of the proposed attacks
on voltage violation detection accuracy. Figure 7 shows the final
outcome of the experiment. As we can see, the Stacked ResNetD
estimator captures the true state of the system and detects all the

Attack Type #Unnecessary
Tap Changes
Initiated

#Voltage Violation
Occurrences Caused

by the Attack
None 0 0

Vanilla FGSM 13 0

Sneaky-FGSM 74 23
Table 1: Impact of adversarial attacks on the rule-based volt-
age regulation process.

voltage limit violations correctly. However, under the proposed
black-box attacks, we encounter some false positives and some
false negatives. Inaccurately detecting voltage limit violations may
mislead the voltage regulation process and result in poor manage-
ment of voltage-control tools, power quality degradation, and even
worse, catastrophic operational failures such as persistent over-
voltage or under-voltage problems at load buses causing equipment
damage. We illustrate these scenarios in the next section.

7.3 Impact on the Voltage Control Scheme
To maximize the system observability with a small number of mea-
surement devices, we instrument all of the head-ends of the primary
feeders of our test system with D-PMUs as depicted in Figure 2.
Hence, voltage regulators close to the endpoints can be controlled
using the D-PMU measurements. However, we must rely on the es-
timated states to apply the VVO mechanism at intermediate buses,
which may experience over-voltage or under-voltage issues due to
changes in load during peak and off-peak hours. Until this phase
of our experiment, we ran the simulation without installing any
voltage regulator. As the simulation results suggest, a number of
intermediate nodes experience the under-voltage problem during
peak hours. We observe that the closest node near the substation
bus that is affected by this issue is bus 6, and the problem persists
as we travel further along the feeder. To address this, we utilize the
RegControl object from the OpenDSS simulator to install a trans-
former with OLTC at line 5 − 6 and set the corresponding control
rule as “If the voltage at bus 6 violates the limits, change the tap set-
ting accordingly”.2 To investigate how the proposed Sneaky-FGSM
attack affects the voltage control scheme, we simulate the BDD-
integrated DSSE-based voltage regulation process using 24-hour
load data (from 6:15am to 6:15am of the next day) in three different
settings: a) in the absence of an attacker; b) under the vanilla FGSM
attack; and c) under the Sneaky-FGSM attack. For the last two set-
tings, we initiate the attacks starting from the second hour. During
this simulation, if a particular measurement is flagged as ‘bad’ data,
we replace the corresponding state estimate with the latest state
estimate that was computed using a ‘good’ measurement.

Figure 8 shows the simulation results. As we observe, in the ab-
sence of the attacker, the voltage control scheme correctly identifies
the violation that took place at 6:45𝑎𝑚, initializes the command
to increase the tap setting, and brings the voltage to the specified
range. However, when the attacker is present, the violation detec-
tion mechanism often fails, resulting in unnecessary tap operations

2Depending on the amount of the violation, one or more tap change actions may be
performed.
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(a) vanilla FGSM (𝜖 = .11) (b) Sneaky-FGSM (𝜖 = .3)

Figure 6: Performance of the Stacked ResNetD model with clean data samples and adversarial data samples generated by the
CNN surrogate. The two bar and whisker plots are presented next to each other for each bus.

No Yes
Detected?

N
o

Y
es

A
ct

ua
l v

io
la

tio
n? 74.98% 0.0%

0.0% 25.02%

0%

11%

21%

32%

43%

54%

64%

(a) Stacked ResNetD state estimator

No Yes
Detected?

N
o

Y
es

A
ct

ua
l v

io
la

tio
n? 57.04% 17.94%

1.89% 23.13%

0%

11%

21%

32%

43%

54%

64%

(b) Stacked ResNetD state estimator, under
vanilla FGSM (𝜖 = .11) attack
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(c) Stacked ResNetD state estimator, under
Sneaky-FGSM (𝜖 = .3) attack

Figure 7: Confusion matrix: detecting voltage violation at load buses using the estimated states. Chosen 𝜖 values ensure that
the attacker bypasses BDD mechanism with at least 95% success rate.

(a) Vanilla FGSM (𝜖=0.11) (b) Sneaky-FGSM (𝜖=0.3)
Figure 8: Impact of adversarial attacks on the rule-based voltage control mechanism. The green curve shows the voltage profile
at the regulated bus under normal conditions. The orange curve shows the same voltage profile when the attacker is present.
The system was operating normally with one tap change to resolve the under-voltage problem at 6:45am; the attack was then
launched, starting at 7:15am, causing unnecessary tap operations throughout the day.

as well as voltage fluctuations and occasional under-voltage prob-
lems at the regulated bus. These issues are more pronounced under
the Sneaky-FGSM attack. Table 1 shows the impact of these attacks
in terms of the number of unnecessary tap changes and voltage
limit violations during a day-long simulation.

7.4 Transferability of Adversarial Attacks
Given the vulnerability of the Stacked ResNetD state estimation
model to the proposed adversarial attack, it is worth exploring
the following questions: (a) how would the effectiveness of the
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DSSE Error (RMSE) Volt Violation Detection Acc (%)Victim Model Attack Type Surrogate Model Vanilla FGSM Sneaky-FGSM Vanilla FGSM Sneaky-FGSM
White-box CNN (ReLU) 0.04 0.05 78.93 62.38

CNN [11] Black-box CNN (tanh) 0.04 0.04 76.89 74.86
(∼ 3 × 10−3, 97.16%) Black-box MLP (ReLU) 0.03 0.05 81.13 70.94

Black-box MLP (tanh) 0.03 0.05 74.40 71.66
White-box Stacked ResNetD 0.38 1.02 53.23 39.63

Stacked ResNetD [11] Black-box CNN (ReLU) 0.12 0.22 80.17 71.29
(∼ 3 × 10−5, 99.99%) Black-box CNN (tanh) 0.23 0.70 73.38 50.75

Black-box MLP (ReLU) 0.23 0.66 45.52 36.00
Black-box MLP (tanh) 0.31 0.54 46.87 36.13
Black-box CNN (ReLU) 0.03 0.09 87.58 72.21

KNN [60] Black-box CNN (tanh) 0.05 0.15 79.45 47.32
(∼ 8 × 10−4, 99.49%) Black-box MLP (ReLU) 0.11 0.23 35.99 31.45

Black-box MLP (tanh) 0.10 0.21 39.94 31.69
Table 2: Evaluating three victimmodels under vanilla FGSM (𝜖 = 0.11) and Sneaky-FGSM (𝜖 = 0.3) attacks crafted using the same
surrogate model as the victim model (white-box) and other surrogate models (black-box). The victim model’s performance, i.e.
the DSSE RMSE and detection accuracy of voltage limit violations, on original data is reported in brackets in the first column.

proposed attacks change if a different surrogate model was used
for state estimation? (b) are the proposed attacks effective against
other data-driven state estimators? To address these questions, we
employ two other data-driven DSSE techniques, namely a CNN
with the same architecture as the surrogate model described in
Section 5.2 and the KNN-based DSSE approach proposed in [60],
and examine the efficacy of the proposed adversarial attacks in
these cases. Additionally, we use four neural networks (CNN and
MLP with ReLU and tanh activation functions) as the surrogate
model. Table 2 summarizes the result. It can be seen that regardless
of the choice of the surrogate model and whether it is identical
to the victim model (as in the white-box attack) or not, the DSSE
error increases to a great extent (especially in the case of Sneaky-
FGSM), causing a significant drop (up to 64%) in the detection
accuracy of voltage limit violations. We attribute this to the fact
that feed-forward neural networks can represent a wide variety of
functions and even approximate neural networks that have different
architectures. While it is impossible to predict which surrogate
model would be the best choice for the attacker (under the black-
box assumption), our result suggests that by training either the
CNN or MLP surrogate model, the attacker could cause sufficiently
high error in the state estimation process to foil voltage regulation.

We wish to emphasize that higher error in the state estimation
process does not always imply lower voltage violation detection
accuracy. This is because the predicted state (i.e., the voltage mag-
nitude) can be far from the true state, yet both may be below/above
the minimum/maximum threshold. This implies that the attacker
needs to take into consideration not only the error induced in DSSE
but also the direction of the induced error. We defer the analysis of
targeted evasion attacks to future work.

8 CONCLUSION
In this paper, we present a comprehensive analysis of (a) the security
and robustness of data-driven DSSE techniques, (b) the effectiveness
of conventional BDD mechanism against black-box adversarial
(evasion) attacks, and (c) the deleterious impact of these types of
attacks on distribution system control and operation practices that

rely on the DSSE result. Our analysis suggests that in general,
data-driven DSSE processes are vulnerable to stealthy and effective
adversarial attacks that can fool the BDD mechanism with at least
95% success rate, this is while the attacker does not need to have
any prior knowledge of the distribution system model or the ML
model used for state estimation. This makes these types of attacks
more practical and likely than conventional FDIA, in which the
attacker is assumed to have some prior knowledge of the system
model to launch an effective attack.We also propose a novel Sneaky-
FGSM attack that outwits the BDD mechanism more frequently
than the vanilla FGSM, and is capable of wreaking greater havoc in
the control system.

This study opens the path to a number of interesting research
directions in the area of smart grid cyber-security. One major limita-
tion of the proposed attacks is that they solely care about inducing
error in the estimation process while bypassing the BDD mech-
anism, without aiming for a specific target. In future work, we
aim to analyze the effects of targeted evasion attacks, where the
attacker pushes the state estimates in a certain direction causing
only certain power quality issues (e.g., just over-voltage incidents),
and model poisoning attacks on ML-based DSSE approaches, and
undertake a comparative analysis of different security measures
that can be taken to prevent and recover from adversarial attacks.
We will also consider other threat models, e.g., when the adversary
has read and write access to real-time measurements of specific sen-
sors only. We plan to investigate whether adversarial samples can
be added during model training to design more resilient ML-based
state estimators. Furthermore, we intend to explore redesigning the
conventional BDD mechanism such that it can detect adversarial
samples effectively and reliably.
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