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Abstract. We state vertebral body (VB) segmentation in MRI as a
distribution-matching problem, and propose a convex-relaxation solu-
tion which is amenable to parallel computations. The proposed algo-
rithm does not require a complex learning from a large manually-built
training set, as is the case of the existing methods. From a very simple
user input, which amounts to only three points for a whole volume, we
compute a multi-dimensional model distribution of features that encode
contextual information about the VBs. Then, we optimize a functional
containing (1) a feature-based constraint which evaluates a similarity
between distributions, and (2) a total-variation constraint which favors
smooth surfaces. Our formulation leads to a challenging problem which
is not directly amenable to convex-optimization techniques. To obtain a
solution efficiently, we split the problem into a sequence of sub-problems,
each can be solved exactly and globally via a convex relaxation and the
augmented Lagrangian method. Our parallelized implementation on a
graphics processing unit (GPU) demonstrates that the proposed solu-
tion can bring a substantial speed-up of more than 30 times for a typical
3D spine MRI volume. We report quantitative performance evaluations
over 15 subjects, and demonstrate that the results correlate well with
independent manual segmentations.

1 Introduction

Precise segmentation of the vertebral bodies (VBs) and intervertebral discs
(IVDs) in MRI is an essential step towards thorough, reproducible and fast
diagnosis of spine deformities [7UTI]. Unlike CT, MRI scans depict soft-tissue
structures, thereby allowing to characterize/quantify common spine disorders
such as herniation [6] and disc degeneration [I1]. However, most of related spine-
segmentation works focused on CT, mainly because the latter affords high con-
trast for bony structures, e.g., [SJI0J16], among others. In MRI, the problem is
more challenging because of the intensity similarities and weak edges between the
VBs and IVDs, the strong noise which results in intensity inhomogeneity within
the VBs, and numerous acquisition protocols with different resolutions and noise
types. Based on standard techniques such as adaptive-boosting learning com-
bined with normalized cuts [7], active shape models [I5], and fuzzy clustering
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combined with atlas registration [I1], existing MRI-based spine segmentation al-
gorithms require an intensive learning from a large, manually-segmented training
set and costly pose-estimation procedures. Furthermore, in some cases, they are
difficult to extend beyond the 2D case, e.g., [7I11I]. Although effective in some
cases, training-based algorithms may have difficulty in capturing the substantial
variations in a clinical context. The ensuing results are often bounded to the
choice of a training set and a specific type of MRI data.

In this study, we state VB segmentation in MRI as a distribution-matching
problem, and propose a convex-relaxation solution which is amenable to paral-
lel computations. From a very simple user input, which amounts to only three
points (clicks) for a whole 3D volume (cf. the example in Fig. [[l), we compute
a multi-dimensional model distribution of features that encode contextual infor-
mation about the VBs and their neighboring structures. Then, we optimize a
functional containing (1) a feature-based constraint which evaluates a similarity
between distributions, and (2) a total-variation constraint which favors smooth
surfaces. Our formulation leads to a challenging problem which is not directly
amenable to convex-optimization techniques. We split the problem into a se-
quence of sub-problems, each can be solved globally via a convex relaxation and
the augmented Lagrangian method. Unlike related graph-cut approaches [TJI3],
the proposed convex-relaxation solution can be parallelized to reduce substan-
tially the computational time for 3D domains (or higher), extends directly to
high dimensions, and does not have the grid-bias problem. The proposed al-
gorithm does not require a complex learning from a large manually-segmented
training set, as is the case of the existing spine-segmentation methods. There-
fore, the ensuing results are independent of the choice of a training set and a
specific type of MRI data. We report quantitative performance evaluations over
15 subjects, and demonstrate that the results correlate well with independent
manual segmentations. Our parallelized implementation on a graphics process-
ing unit (GPU) demonstrates that the proposed solution can bring a substantial
speed-up of more than 30 times for a typical 3D spine MRI volume.

Distribution-matching formulations have recently attracted a significant inter-
est in computer vision [IJT2]13]. Several studies have shown that, in the context of
2D color segmentation [IJ13], such global constraints can yield outstanding per-
formances unattainable with standard segmentation algorithms. However, these
works are based on either active contours [2J12] or iterative graph cuts [II13]. The
active contour solutions were obtained following standard gradient-descent pro-
cedures [12], which lead to computationally intensive algorithms [IJI2], more so
when the image dimension is high (3D or higher). The contour evolution ensu-
ing from a distribution measure is incremental, and requires a large number of
updates of computationally expensive integrals [IIT2]. The recent graph cut so-
lutions in [IJI3] demonstrated significant improvements over active contours in
regard to computational load/speed as well as optimality of the solution. Unfor-
tunately, graph cuts are not amenable to parallel computations [I8]. In practice,
it is well known that graph cuts can yield an excellent performance in the case of
2D grids with 4-neighborhood systems [4]. However, the efficiency may decrease
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considerably when moving from 2D to 3D (or higher-dimensional) grids and when
using larger-neighborhood grids [9]. Furthermore, the well-known grid bias is an-
other limitation of graph-based approaches [14].

2 Formulation

Let F: 2 C R® — Z C RF be a function which maps 3D (or higher-dimensional)
domain {2 to a multi-dimensional (k-dimensional) space of contextual features
Z. For each point x € {2, F(x) is a vector containing image statistics within
several box-shaped image patches of different orientations/scales (refer to the
illustration in the left-hand side of Fig.2l). Such patch-based features can encode
contextual knowledge about the region of interest and its neighboring structures
(e.g., size, shape, orientation, relationships to neighboring structures, etc.). Let
M denotes a k-dimensional model distribution of features learned from F within
a rectangular approximation of one VB in a single 2D mid-sagittal slice of {2
(refer to the example in Fig. [Il). Such approximation is obtained from a very
simple user input which amounts to only three points (clicks). Given M, we
state VB segmentation as a distribution-matching problem. Our objective is
to find an optimal region in {2, so that (1) the distribution of the contextual
features within the region most closely matches model M and (2) the surface of
the region is smooth. We solve the following optimization problem:

min  E(u) = — Z VPu(2)M(z) +)\/ |[Vu(x)| dx where
u€e{0,1} ez /e _
2 ~
Contextual Dist:i’bution matching Smoothness
K(F(x) —2z)d 1 2
Pu(z) = 1o CKED =2 iy L e ()
S u(x)dx (2702)5

u: {2 — {0,1} is binary function which defines a variable partition of 2: {x €
2/u(x) = 1}, corresponding to the target region, and {x € 2/u(x) = 0},
corresponding to the complement of the target region in (2. P, is the kernel
density estimate (KDE) of the k-dimensional distribution of features F within
variable region {x € £2/u(x) = 1}. K is a Gaussian kernel (o is the width of
the kernel). The distribution-matching term in (Il) measures the Bhattacharyya
similarity between P, and M. This measure has a fixed (normalized) range
which affords a conveniently practical appraisal of the similarity. This is not the
case for the other common measures (e.g., the Kullback-Leibler divergence).

The smoothness term is a standard total-variation constraint which penalizes
the occurrences of small, isolated regions in the solution. )\ is a positive constant
that balances the contribution of each term.

Direct computation of () is a challenging problem due to the high non-
convexity of the distribution-matching term. To obtain a solution efficiently, we
split the problem into a sequence of sub-problems, each of which can be solved
globally via a convex relaxation and the augmented Lagrangian method.
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Sub-problems: Rather than optimizing directly F, we optimize iteratively a
sequence of instrumental functions, denoted A(u,u*), ¢ > 1 (¢ is the iteration
number), whose optimization is easier than E:

1 — min A(u,u?), i>1 s.t. 2
u ugggll} (u,u), i>1 s (2a)
BE(u) < A(u,u®), i>1 (2b)
E(u) = A(u,u) VYu:2—{0,1} (2¢)

Using the constraints in ([2b) and ([Zk), and by definition of minimum in Zh),
one can show that the sequence of solutions in ([Zh) yields a decreasing sequence
of E: E(u') = A(u',u’) > A(u't! u?) > E(u't!). Furthermore, E(u’) is lower
bounded and, therefore, converges to a minimum of E. Now, consider the fol-
lowing proposition [:

Proposition 1. Given a fized u', for any u : 2 — {0,1} verifying {x €
Q/u(x) = 1} C {x € 2/ui(x) = 1} and Yo € [0, }], the following function
verifies the constraints in (3b) and ([@c) and, therefore, its iterative optimiza-
tion yields a minimum of E (in the expression of Ay, x and z are omitted as

arguments to simplify the notations):

Aa(uu) = —(1+0a) Y V/PuM+ / {oaug’ + (14 a)(1 —u)hi + X |Vu|}dx

z€EZ 2
where q° — Dsez VPui (z)M(z) ., . M(z)
here ' = [ utdx 3 = Jo utdx ZGX;K( F) P, (z) ®)

Convex Relaxation and Equivalent Constrained Problem: Now, we
minimize A, over u € {0,1} via convex optimization. However, min,c o1} Aa
is still non-convex due to the binary-valued constraint u € {0,1}. We first relax
such constraint to interval [0, 1], thereby obtaining the following convex problem:
min,¢(o,1] Aa- Then, we propose the following result which allows us to obtain
an exact and global minimum of A, over u € {0,1} via the multiplier-based
augmented Lagrangian method (the proof follows the ideas of [T7J18]):

Proposition 2. The convex problem min,cjg 1] Aa (u,ut) is equivalent to the
following constrained problem:

max min / {pn + u(divp — ppr + py) }dx s.t.
Prpep u o

pr(x) < (L+ Q)R (x); py(x) < ag'(x); and [p(x)| <A ace. x €2 (4)

where u is viewed as the multiplier to constraint divp —pnp+pg =0.p: 2 = R,
pr : £2 = R and py : 2 = R are variables in the form of scalar functions.
Furthermore, by simply thresholding the optimum u* € [0,1] of [{l), we obtain
an exact and global optimum of the non-convex problem minu€{071}Aa(u,ui).

' The proof is given in the supplemental material available at this link:
http://externe.emt.inrs.ca/users/benayedi/BenAyed-Miccail2-Supp.pdf
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The equivalence in proposition 2 is similar to the equivalence of the continuous
max-flow/min-cut problem in [I7/I8]. This equivalence allows us to derive an
efficient multiplier-based algorithm for optimizing F. The algorithm is based on
the standard augmented Lagrangian method [BII7/I8]. We define the following
augmented Lagrangian function corresponding to the problem in (@) (multiplier
u is replaced here by v to avoid confusion between inner and outer iterations in
the algorithm presented next): Lc(pn, pg,p,v) = [o{pn + v(divp — pn + pg) —
5 Idivp — pp +pg\|2}dx. ¢ is a positive constant. Here following a summary of
the algorithm (¢ and j are the numbers of inner end outer iterations respectively).

Algorithm 1: Multiplier-based augmented-Lagrangian optimization
— Initialize u by u°(z) =1 (i = 0)
— repeat
1. Update ¢g* and h® according to ()
2. setij,ppo,ph:p%,pgng and v = v
3. repeat
e Optimize L. with respect p:
P =max, <a— Hdivp —ph =
This can be solved by the Chambolle’s algorithm [5].
e Optimize L. with respect to ps (closed-form solution):
i 41

0

2
dx

i j
P =max,, c(yani [oPh = 5 —pn+py =",

e Optimize L. with respect py (closed-form solution)Q:
J+1 _

div p

uvJ

divp P+ pe— Y

pg<ag? _S ‘

e Update multiplier v:
W =7 — (divp Tt — pitt 4+ pith)

o letj=4+1

until Convergence;

4. Let vx the solution obtained from the inner iterations above. Compute a

binary solution by applying Otsu’s thresholding to v*.

5. Leti=i+1

6. Let u* equal to the binary solution obtained at step 4.

until Convergence;

Py = max

3 Experiments

Description of the Features: The left-hand side of Fig. 2 depicts the con-
textual features we used in our experiments. For each point x € (2, we built a
feature vector of dimension 3: F(x) = (F1,Fq, F3), with F; the mean of inten-
sity within a 21 x 7 x 1 rectangular-shaped, vertically-oriented patch, Fs the
mean of intensity within a 7 x 21 x 1 rectangular-shaped, horizontally-oriented
patch, and F3 the mean intensity within a 7 x 7 x 1 square-shaped patch, all
centered at point x. We used 32 bins to compute the feature distributions. Note
that other features based on image gradients or texture can be used within the
same framework.
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Fig. 1. A typical 3D example with a 320 x 150 x 80 volume. First column: three-point
user input in a single 2D mid-sagittal slice (slice 35); second column: the obtained
3D surfaces of the lumbar (L1 to L5) and T12 VBs; third and fourth columns: the
corresponding 2D-slice results (slices 35 and 25). Last column: an image patch from the
user-input slice, which illustrates the difficulties inherent to spine MRI segmentation.
The smoothness weight is set equal to one (A = 1).

A Typical 3D Example: Fig. [l depicts a typical example of the results using
a 320 x 150 x 80 lumbar spine volume of the type T2-weighted. The first column
shows the simple, three-point user input in a single 2D mid-sagittal slice (slice
35). The second column shows the obtained result, depicted by the 3D surfaces
of the lumbar (L1 to L5) and T12 VBs. The third and fourth columns depict the
corresponding 2D-slice results (slices 35 and 25). The last column is an image
patch from the user-input slice, which illustrates the difficulties inherent to spine
MRI segmentation. The red arrows point to weak edges between the VBs and
IVDs, the green arrows to intensity similarities between the VBs and IVDs, and
the blue arrow to strong image noise within the VBs.
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Fig. 2. Left: illustration of the contextual features; right: DM evaluations

Computational Evaluations: We further evaluated two implementations (with
and without parallelization), one GPU based and the other CPU (central pro-
cessing unit) based. The parallelized computations were run on an NVIDIA
Quadro FX3700 with 112 Cuda cores, whereas the non-parallelized version was
run on an K5440 quad core 2.83 GHz Xeon, with 3.25GB of RAM. Both versions
were implemented in C. Table [0 reports the GPU/CPU times corresponding
to the example in Fig. [l For the 3D case, the parallelized version brought a
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substantial speed-up of more than 30 times. In the 2D case, the GPU version
brought a less significant, but nonetheless important, speed-up of 13 times.

Table 1. Computational GPU/CPU times of the proposed solution

Implementation (A = 1) 3D (320 x 150 x 80) 2D (320 x 150)

GPU (Parallelized)  143.08 s (< 3 min) 0.64 s
CPU 4.50x10? (= 75 min) 8.46 s

Table 2. Quantitative performance evaluations over 15 subjects

DM mean DM std Correlation coefficient (r)
0.85 0.051 0.98

Quantitative Evaluations: The evaluation was carried out over a data set of
15 mid-sagittal 2D MR spine scans acquired from 15 different subjects. We seg-
mented automatically a total of 75 lumbar VBs starting from a simple three-point
user input. We focused on lumbar VBs and MRI data of the type T2-weighted.
However, the proposed method can be readily extended to IVDs and other MRI
types, as it does not require any shape or image specific training. The results
were compared to independent manual segmentations approved by an expert.
We assessed the similarities between the ground truth and the obtained segmen-
tations using two measures: the Dice metric (DM ) and the correlation coefficient
(r). DM is commonly used to measure the similarity (overlap) between the au-
tomatically detected and ground-truth regions: DM = Sisfé“m, with Sa, Sm,
and Sam corresponding respectively to the sizes of the segmented lumbar region
(i.e., the region containing all the VBs from L1 to L5), the corresponding hand-
labeled region, and the intersection between them. Table [ reports for all the
data analyzed the DM mean and standard deviation, as well as the correlation
coefficient between manual and automatic region sizes. Fig. 2l (right) depicts the
DM for the 15 analyzed lumbar regions (each region contains 5 VBs). We ob-
tained a DM > 0.80 for 13 subjects (DM is about 0.75 for only two subjects).
The proposed method also yielded a high correlation: r = 0.98.

4 Conclusion

We proposed a distribution-matching algorithm for VB segmentation in MRI
and a convex-relaxation solution which is amenable to parallel computations.
The algorithm removes the need for a complex learning from a large training
set. We described quantitative performance evaluations over 15 subjects, and
showed that a GPU-based implementation of our solution can bring a substantial
speed-up of more than 30 times for a typical 3D spine MRI volume.
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