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Abstract—A defining feature of collectable card games is the
deck-building process prior to actual gameplay, in which players
form their deck out of large collections of cards or small, fixed
sets. Learning to build decks is difficult for players and models
alike due to the large card variety and highly complex semantics,
as well as requiring meaningful card and deck representations
when aiming to utilise AI. In addition, regular releases of new
card sets lead to unforeseeable fluctuations in the available card
pool, thus affecting possible deck configurations and requiring
continuous updates. Previous GameAI approaches to building
decks have often been limited to fixed sets of possible cards,
which greatly limits their utility in practice. In this work, we
explore possible card representations that generalise to unseen
cards, thus greatly extending the real-world utility of AI-based
deck-building for the game “Magic: The Gathering”. We study
such representations based on numerical, nominal, and text-based
features of cards, card images, and meta information about card
usage from third-party services. Our results show that while the
particular choice of generalised input representation has little
effect on learning to predict human draft picks among known
cards, the performance on new, unseen cards can be greatly
improved. Our generalised model is able to predict 55% of
human choices on completely unseen cards, thus showing a deep
understanding of card quality and strategy.

Index Terms—Magic: The Gathering, card games, neural
networks, Siamese networks, comparison training, game AI

I. INTRODUCTION

Modern board and card games are popular domains for AI
research due to their inherent structure and wide popularity.
While super-human has been achieved in some games such as
Go, chess, DOTA and poker [1], [6], [11], many others still
provide numerous obstacles. Providing additional difficulty,
commercial games, and especially collectable card games
such as Hearthstone and Magic: The Gathering (MTG), are
constantly evolving due to card changes and the release of
novel content. This implies that any model for such games
must be able to continuously adapt to new releases to maintain
usefulness. In this work, we focus on one crucial aspect of
the popular card game Magic: The Gathering; deck-building.
Before card play begins, players build their deck of cards by
selecting from a large pool of available choices. This initial
stage of the game is crucial for success, as without strong

and general deck-building strategies, strong performance is
not achievable. We focus on learning a generalised model for
drafting, a sub-area of deck-building, in Magic: The Gathering
that is readily expandable to new content and can accurately
predict human decisions. To achieve this, we incorporate the
contextual preference ranking (CPR) framework of Bertram
et al. [2] and adapt it in several ways:

• The original work on CPR is limited to a single, fixed set
of cards, using one-hot encoding to represent inputs to a
Siamese neural network. We explore different generalised
card representations for use in CPR, thus extending the
method to arbitrary and potentially previously unseen
cards.

• We train a large model for drafting in Magic: The Gath-
ering on a large, heterogeneous dataset of 100 million
examples. The model obtains general knowledge of card
semantics, showing usefulness for drafting decks with
new cards.

• We explore fine-tuning the model to quickly adapt to
newly released card sets, achieving rapid performance
improvements.

II. RELATED WORK

We build on the contextual preference ranking (CPR) ap-
proach [2] by making it more general and widely usable, while
also improving upon its overall accuracy. CPR functions by
constructing preferences between choices within an explicitly
stated context in which the decision was made. Data on such
decisions-in-context can be coded as triplets which are used
to train Siamese neural networks (SNNs) [5]. As one such
case, card drafting decisions (see Section III) in Magic: The
Gathering can be regarded as preferences among the different
available cards in the context of all previously chosen cards.
In the initial CPR research [2], this approach was shown to
outperform classical fully-connected neural networks [15].

Other research on drafting, or deckbuilding in general, is
largely based on reinforcement learning or genetic algorithms
[4]. For the game of Legends of Code and Magic, a simple
card game developed for testing AI agents, earlier work [8],
[13] separates the drafting and playing phases and learns to
draft while approximating the strength of the resulting decks
through heuristic-based gameplay. Such approaches depend979-8-3503-5067-8/24/$31.00 ©2024 IEEE



strongly on the chosen gameplay strategies and therefore limit
the depth of strategy. Later, end-to-end approaches for draft-
ing and playing were developed [16], which led to drafting
strategies decoupled from heuristics. However, in the LOCM
test-bed, card complexity is low and gameplay is simple, which
limits applicability to real games. Xiao et al. [17] used a
similar algorithm, an end-to-end reinforcement learning agent
combining card selection and gameplay, for the highly success-
ful commercial game of Hearthstone. This approach yields
impressive results and appears to be a promising direction
when fast-forward game simulations are possible. However,
in order to allow exploration of the enormous game space, the
card pool and selection options were strongly restricted, thus
slightly limiting overall usefulness. So far, it appears that end-
to-end reinforcement learning of drafting and gameplay is not
yet practical for unrestricted game environments, especially
when regarding ever-changing domains. Our work combats
this problem from a different angle: instead of attempting to
learn extremely complex relations with no prior knowledge, we
rely on human behaviour and model decisions seen in historic
game data in a generalised manner.

Overall, human players of Magic: The Gathering have
shown significant interest in using drafting agents as tools to
aid their decision-making. Popular tools for this task1 attempt
to solve the problem though hand-constructed rules, and thus
rely on humans in the design, and prevent the usage AI models.
One of these [15] employs a classical fully-connected neural
network trained with supervised learning, but received worse
predictive accuracy than CPR [2]. Peer-reviewed research
results on the other tools are not available at this time. Finally,
general work on card games used different card representations
[9], [19], opting to represent features or images of cards for
classification and regression, showing promising directions.

III. DRAFTING IN COLLECTABLE CARD GAMES

Most collectable card games (CCG) provide two overar-
ching modes of gameplay: Constructed and Limited. This
includes commercial games such as Hearthstone, Magic: The
Gathering, Lorcana or Flesh and Blood, as well as simple AI
counterparts such as Legends of Code and Magic. To simplify
the following explanation we focus on Magic: The Gathering
(MTG), but most rules apply to other games with minimal
adaptions.

In constructed modes, each player independently builds a
deck of at least 60 cards in advance of playing the game.
Players possess mostly free reign over which cards to include
in their deck, leading to an enormous space of potential con-
figurations. Theoretically, the possible deck space is infinitely
large as no upper bound on legal card quantity exists. In
practice, the vast majority of players select the smallest legal
number of 60 cards to maximise the consistency of their decks
by minimising the variance of drawn cards. At the time of
writing, the number of unique cards to choose from ranges

1https://draftsim.com/arenatutor/, https://mtga.untapped.gg/companion, and
https://mtgaassistant.net/

from 3,037 cards in the smallest version of the game to
26,524 in the largest format. Based on this, and disregarding
some specifics of deck-building, the number of unique decks
players could potentially build lies between

(
3037
60

)
> 10126

and
(
26524
60

)
> 10183. While an enormous space, the majority

of such deck compositions are completely useless in practice
and high-level human competition mostly converges to fewer
than 100 deck archetypes with slight individual adaptions.
How one could train models that emulate such an enormous
reduction in deck space remains an open research question.

Limited games, or in this context drafts, incorporate deck-
building into the actual game. Before play commences, players
take turns to build their decks sequentially. Players start the
draft with a choice of 15 initial cards, passing unpicked cards
to the other players, thus decreasing the number of options,
until all initial cards are selected. This process repeats thrice
with 15 cards per player, thus leading to a total of 45 cards
and 42 choices with 15 to 2 options for every participant.
Therefore, within one draft, one player’s decisions result in
(15!)3 > 1036 different possible final deck configurations.
While still large, the sequential nature of decisions leads to
smaller, more manageable and largely independent tasks. In
this work, we focus on such drafting environments, viewing
each decision as independent and disregarding the effect of
card choices on other players. As such, we solely focus on
each individual choice in the context of the player’s previous
decisions, enabling the use of CPR.

IV. ADAPTING CONTEXTUAL PREFERENCE RANKING

A. Contextual Preference Ranking

Contextual preference ranking (CPR) is a framework for
learning to predict the better of two choices cj and ck in
the context of a set of previously made decisions C, formally
denoted as

(cj ≻ ck | C) . (1)

In our setting, the context C represents the (incomplete) deck
of cards a player is holding, cj and ck are two possible
additions to it, while the preference encodes which one of
the two is a better fit to C.

Bertram et al. [2] tackled this problem by training a Siamese
neural network (SNN) from a database of human card selection
decisions. The key idea is to train a single neural network
N(.) that maps card sets and individual cards into a uniform
embedding space by minimising the triplet loss

Ltriplet(a,p,n) = max (d(a,p)− d(a,n) +m, 0) (2)

over three weight-sharing copies of the network, where the
anchor a = N(C) represents the embedding of the context C,
p = N(cj) the embedding of the preferred choice cj , and
n = N(ck) the other choice. The parameter m represents a
desired margin (typically set to m = 1), and d is a distance
metric (typically the Euclidean distance).



Fig. 1. High-level overview of generating card representations according to Section IV-B. The representation-variant shown here is Features + Meta + Image,
simpler representations only use parts of the pipeline.

In testing, the model embeds the context C and all possible
choices ci, and ranks choices by their embedded distance to
C. A card

c∗ = argmin
ci

d(N(ci), N(C)) (3)

with minimal distance is chosen as the best addition to the
current deck C.

We follow this framework but with a generalised imple-
mentation. In the former work, the presence of 265 unique
cards was represented as one-hot encodings used as inputs to
the SNNs. This input representation can not be adapted for
training or prediction on unseen cards and separate models
would need to be trained for each new set of cards. The
majority of our work focuses on this problem of training on
arbitrary sets and generalising to unseen inputs.

B. Input representation

In MTG, cards are released in so-called expansions or sets.
Every such set features 200–300 unique cards. The majority
of these cards are completely new and often feature new rules
and mechanics. In order to generalise CPR for this type of
application, we study different representations of cards and
explore their advantages and disadvantages.

1) Random vectors: Representing cards by randomly gen-
erated vectors of arbitrary size enables an infinite space of
possible inputs. However, this representation prevents gener-
alising knowledge to unseen cards and learning semantics and
is thus only useful for in-sample cards. Still, we experiment

with random vectors as card representations to provide insight
into the importance of representation choice for seen sets. In
these experiments, each unique card is encoded as a vector of
size 1024.

2) Hand-coded features: To generalise across cards and
sets, we can encode cards by their uniquefeatures which cap-
ture the rules and semantics associated with them. Magic card
features include numerical values, categorical features of large
categories, and a card text of great importance 2. To a lesser
extent, they contain an RBG image, which will be regarded
in the following section. For the Features representation, we
encode a card as a vector of all numerical and categorical
features and append a text-embedding of the full card text
generated with a sentence transformer [10].

3) Image Representation: When simply encoding a card
by its pixel-wise RGB values, no handcrafted features are
required. However, this tasks the model to learn the complex
semantics of a card purely from visual cognition. Text recogni-
tion from images is challenging [14] and likely leads to a loss
of information compared to an explicit encoding. In addition,
full-scale RGB images of cards are large (3 × 936 × 672),
leading to an explosion in input size. To combat this, we
train a basic convolutional autoencoder [7] to construct la-
tent representations of card images which can be used as
compressed representations of inputs to the SNN. In our
experiments, we found strong influence, both visually (see
Figure 3) and numerically (see Table VI-A), of the bottleneck



Fig. 2. Anatomy of a Magic: The Gathering card. Cards consist of a number
of different features of varying importance and representation.

Fig. 3. Inputs and reconstructions of trained autoencoders. Input and outputs
are of shape 3 × 936 × 672, the latent spaces are 32-dimensional and
1024-dimensional respectively. The latent card representations are used as
compressed input to the SNN (see Figure VI-A)

dimensionality on the received reconstructions. We present the
results with latent space dimensionalities of 32 and 1024,
finally choosing 1024 dimensions for later experiments to
minimise information loss.

4) Statistical Meta Information on Cards: Meta informa-
tion about card use by human players, such as pick-rate and
player win-rates when using the card, is publicly available
2. Such usage information provides direct insight into human
decisions for the cards involved. This is an especially useful
feature when little useful context is available, e.g. when
comparing similar cards, or at stages of deck-building when
few cards have been selected. We provide an experiment where
we train a model solely on the meta-information (Table VI-A),
but generally, such statistics should be viewed as additional
information rather than a stand-alone encoding. Noteworthy,
card statistics are only available when a set has seen sufficient
server play and is thus impossible to use for entirely new sets.
In our experiments, we encode statistics as a scalar vector of
size 16.

2https://www.17lands.com/card_data

C. Encoding networks

Regardless of the specific encoding used, adapting CPR
from one-hot to generalised encodings provides the additional
challenge of deriving a representation for card decks from the
representation of single cards [3]. With one-hot encodings of
cards, a deck can simply be represented as the sum of card
encodings without loss of information. However, with feature-
based card encodings, a sum-based encoding of a deck makes
it impossible to reconstruct individual cards. To prevent this,
we represent a deck of cards as a two-dimensional array of
size 45 × n, where 45 is the maximum number of cards
in the deck and n is the representation size of individual
cards. Slots for not-yet-picked cards are set to all zero. When
decks and cards are used as inputs to the SNN, this first
requires translating them to a common representation (see
Figure 1), which is achieved by adding two separate encoding
networks that output 512-dimensional representations, of cards
and decks respectively, to the training pipeline. These encoding
networks are trained end-to-end with the SNN.

V. EXPERIMENTAL SETUP

A. Data

With the outlined adaptions to CPR, we evaluate their
influence on the accuracy of the resulting model. In addition
to the changes outlined in Section IV, the experiments in this
section feature a larger variety of card sets from different
sources, collectively encoding approximately 100 million total
card picks. Table I shows all used datasets along with their
respective release dates and training set sizes. We used all
released datasets up to and including LTR. Data of M19 is
obtained from DraftSim3, all other datasets are provided by
17Lands4. Each dataset was split into 80% training and 20%
test set. Note, however, that these numbers show the individual
card picks. In our preference-based formulation, each pick
results in 1–14 preferences, thus the total number of triples
is even larger.

TABLE I
ALL CARD SETS USED IN THIS RESEARCH WITH THEIR RESPECTIVE

RELEASE DATA AND TRAINING SET SIZE.

Set Release date Training size

LTR 23-06-23 684,724
MOM 21-04-23 5,085,312
SIR 21-03-23 2,422,668
ONE 10-02-23 5,260,169
BRO 18-11-22 4,153,162
DMU 09-09-22 7,887,976
HBG 07-07-22 1,680,866
SNC 29-04-22 5,753,840
NEO 18-02-22 5,122,921
VOW 19-21-21 4,012,657
MID 24-09-21 3,363,477
AFR 23-07-21 959,794
STX 23-04-21 3,809,102
M19 07-07-18 29,094,192

3https://draftsim.com/draft-data/
4https://www.17lands.com/public_datasets



Fig. 4. General overview of training. Refer to Figure 1 for the explanation of
the representation pipeline. Training loss is computed based on Equation (2).

B. Evaluation Measure

The accuracy of the model is defined as the top-1 accuracy
when ranking all possible picks. To generate this, we embed
the current deck and all possible options, rank all options
by their distance to the deck in the embedding space, and
choose the card with the minimal distance as shown in (3).
The selected card is compared to the human choice captured in
the dataset and the percentage of matching choices is reported.
Note that, as this aims to predict human choices, it is generally
not possible to achieve perfect accuracy, as human decisions
are not necessarily correct or consistent.

C. Siamese Neural Network configuration

As explained in Section IV-C, using CPR with generalised
card representation requires separate encoding networks for
cards and decks. The card encoding network uses 4 fully-
connected layers of size 1024 with dropout, normalisations
and ELU activations. The deck encoding network consists of
6 convolutional layers with 1 to 16 filters, normalisations,
maxpooling and ELU activations with a single fully-connected
output layer. Both encoding networks feed into the same
Siamese neural network, which uses 5 fully-connected layers
of size 512, normalisations, dropout and ELU activations.
The final output layer is of size 512 and uses the tangens
hyperbolicus activation, thus creating a 512-dimensional em-
bedding space of range [−1, 1]. For a general overview, refer
to Figure 4.

VI. RESULTS

Experiments in this section are split: Section VI-A inves-
tigates the different input encodings (see Section IV-B) and
Section VI-B evaluates fine-tuning a pre-trained model on
previously unseen cards, i.e. simulating the release of a new
card set.

A. Representation

To investigate the influence of card representation (see
Section IV-B) on the received models, we conduct a series
of experiments with SNNs that only differ in the shape
of the input signals. To reduce the computational effort of

this experiment, models are trained solely on the NEO set.
The accuracy of the received models is reported on held-out
samples of the NEO set and on the average accuracy across
all unseen sets. Section VI-B will report on experiments with
the whole dataset to maximise predictive performance and
simulate real-world use.

TABLE II
TOP-1 TESTING ACCURACY OF MODELS WITH DIFFERENTLY ENCODED

INPUTS. ALL MODELS ARE TRAINED SOLELY ON NEO AND TESTED ON A
HELD-OUT NEO TEST-SET AND UNSEEN CARDS. ACCURACY IS AVERAGED

ACROSS ALL UNSEEN SETS.

Model Input size NEO test unseen sets

One-hot 302 67.80% NaN
Random 1024 67.87% 23.79%
Image 32 32 65.93% 28.69%

Image 1024 1024 68.09% 31.10%
Meta 16 64.73% 42.14%

Features 1306 67.76% 33.57%
Features + Meta 1322 68.07% 34.74%

Features + Image 1024 2330 67.81% 35.59%
Features + Meta + Image 1024 2346 68.00% 42.87%

In Table VI-A we see the test accuracies obtained on NEO
and the unseen sets. Interestingly, the top-1 accuracy on the
seen card set is consistent across most models apart from
the two with small input spaces and thus limited information.
However, accuracy on unseen sets, i.e. the ability of the model
to learn general characteristics of cards, differs drastically.
The Random model is still able to accurately model decisions
in NEO, thus showing that with sufficient data on a set,
generalised knowledge is not required. However, this model
provides no insight into unseen cards where we receive the
accuracy of random predictions5.

All other representations are able to improve upon random
predictions on unseen cards. Regarding the autoencoded image
representations, we receive worse accuracy with the small
latent space, likely due to the generally too-small input space.
The more information-rich compression reaches high accuracy
on the NEO test-set, as well as achieving some generalisation
to the unseen sets. Surprisingly, hand-engineered features
only receive slightly better general results, thus leading us
to speculate that with limited data, models do not generate
rich semantics of cards but rather use shallow features like
their colour, which are easily recognisable from the image
representations.

The Meta model using only 16 features based on meta
attributes achieves among the best accuracy on unseen sets,
underlining that when limited information is available, simply
using card statistics leads to reasonable results. However,
combining features and meta-information is not able to utilise
this, barely improving upon the Features model. Similarly,
combining Features and Image 1024 only leads to slightly
better performance on unseen cards. The reason for this is not

5Decisions follow a uniform random distribution with 1 to 15 choices, thus
random predictions would yield an accuracy of 1/15 ·

∑15
i=1

1/i ≈ 0.22. The
observed accuracy for the random representation is slightly higher because
some datasets are missing a small number of picks.
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Fig. 5. Accuracy of Features+Meta+Image model trained on all sets apart
from BRO, split by set and pick. Numbers in brackets show the average
accuracy per set. Graphs are separated by the three packs.

clear to us and requires further investigation. The overall best-
performing model is Features + Meta + Image, being able to
predict almost 43% of decisions on completely unseen cards
while retaining accuracy on NEO.

From this experiment, the initial card representation appears
largely irrelevant when CPR is used to construct an embed-
ding space for known cards. Even random vectors as card
representations and one-hot encodings yield similar results as
encoding a card’s semantics. However, input representation
clearly matters when aiming to generalise to new, previously
unseen cards. Additionally, meta-information about a card’s
usage, if available, is highly relevant for unknown cards and
already leads to reasonable results.

B. Transfer

Following these experiments, the Features+Meta+Image
model with the highest combined accuracy is chosen for
continued exploration. Our goal in this section is to model
a real-world setting where a model is trained on all available
card sets, and then tested on or adapted to a newly issued set of
cards. To test this ability for transferring obtained knowledge
to new card sets, we use all but one of the datasets listed in
Table I for training. On the one hand, this can be expected to
improve the overall performance of the model by increasing
training set size and card heterogeneity, and on the other hand,
it is also meant to simulate the intended application scenario,
where we can assume to train on all available card sets and
test on a newly issued set. To simulate a new card set being
released, we hold out a single set of cards (BRO), reporting
accuracy on held-out test sets by averaging across all seen sets
and explicitly reporting the test set performance on NEO and
BRO.

As expected, by simply increasing the sample quantity
(75 million instead of 5 million) and unique card variety
(2,990 cards instead of 302), the general accuracy of the
model increases consierably (see Table VI-B). Although per-
formance on the seen sets is comparable to the previous
results, the model Pre-training, which is the same model
as Features+Meta+Image 1024 but trained on more data,

achieves 55.44% accuracy on the unknown BRO set. Splitting
the received accuracy over all sets and picks (Figure 5), we see
similar patterns on all sets, regardless of whether the model
was trained on it or not. The accuracy of picks at the start and
end of each pack is higher, while picks in the middle appear
more difficult. Compared to previous work with CPR [2], the
accuracy on M19 is improved by more than 2 percentage
points.

Building on this, we explore fine-tuning or transfer learn-
ing [18], with the model on two individual sets, NEO and
BRO. When fine-tuning, the large corpus of training data
is replaced with a single set of cards, thus aiming to use
previously obtained general knowledge for a smaller task. For
our experiment, a model is initialised with the parameters
obtained from pre-training on the large corpus and trained
exclusively on NEO and BRO without further adjustments to
the training process, omitting freezing layers or other attempts
to knowledge retainment.

The two fine-tuning settings serve different purposes. When
fine-tuning on NEO, no new data or cards are seen. Rather,
the training data is reduced to decrease the task complexity,
thus gaining the opportunity to improve the accuracy. Using
BRO to fine-tune replaces previous data with unseen cards,
thus investigating whether the model can quickly adjust to
new information, simulating the release of a new set of cards
in real applications.

TABLE III
TOP-1 TESTING ACCURACY OF MODELS TRAINED ON A LARGER CORPUS

OF DATA.

Test data

Training data Seen sets hold-out NEO test-set BRO

Pre-training 66.49% 67.20% 55.44%
+ tuning on NEO 58.20% 67.97% 52.25%
+ tuning on BRO 57.97% 58.26% 62.27%

We find that fine-tuning on NEO barely improves accuracy
on the set and does not achieve better overall results than
random initialisation. This again shows that when regarding
a known, fixed set of cards, generalised knowledge of card
semantics seems to not affect accuracy. Additionally, when
fine-tuning on one set, accuracy on the others diminishes.
While potentially preventable by freezing layers or using small
amounts of pre-training data, we omit such experiments.

Fine-tuning on BRO naturally leads to improved accuracy
as the model was not trained with these cards previously.
While we do not find higher peak accuracy compared to
random initialisation, using the pre-trained model leads to
much quicker adaption to new data (see Figure 7) and is thus
useful for fast-paced environments.

VII. VISUALISATION

Although this work mainly aims to explore card representa-
tion and general accuracy of results when using CPR to learn a
universal drafting model, CPR provides the inherent advantage
of an intuitively interpretative embedding space because all
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Fig. 6. 2-Dimensional Representation of embedding space per set. This space is created with the Pre-training model (Table VI-B), thus cards visualised in
(b) are unseen. However, a similar clustering structure emerges, clearly showing a generalised understanding of card semantics. The lime-green point denotes
the embedding of an empty deck, thus each card’s distance to it serves as an approximation of its absolute strength.
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model predictions are directly based on minimising distances.
As the embedding space is high-dimensional, we use TSNE
[12] to compute a 2-dimensional approximation (see Figure 6)
and separately plot each set of cards. Each card is plotted with
its respective colour in the game (see Figure 2), one of the most
defining features. For this plot, the Pre-training model from
Section VI-B is used but all strong models provide similar
visualisations.

Highly intuitive clusters emerge in this embedding space.
All colours are grouped together and multiple-coloured cards,
visible as either two-coloured points with different borders
or as golden points for more than two colours, are placed
between their respective colours. All plots feature 5 points
at large distance from the main plot, which are the 5 cards
included in every set that provide no value to gameplay and
should thus never be picked. Interestingly, the BRO set, which
consists of previously unseen cards, exhibits similar structures
as the sets which were used for training the model, indicating
a clear semantic understanding of the model.

VIII. CONCLUSION

In this work, we generalised the contextual preference
ranking framework [2] by extending it to generalised card
representations. The key idea is to replace the previously
utilised one-hot encodings with alternative representations,
consisting of card features, text-embeddings and auto-encoded
image compressions of Magic: The Gathering cards. Follow-
ing CPR, the card representations are mapped into a high-
dimensional embedding space using Siamese neural networks
where distances model the relationship between cards and
decks. We find that the input representation is largely irrelevant
when modelling singular, fixed sets. In such cases, where
data for all cards is available, all models with reasonable
inputs perform similarly well. However, large discrepancies in
accuracy emerge when aiming to understand card semantics,

e.g. when predicting decisions with previously unseen cards,
a common occurrence when new cards are released. Here, we
find that hand-engineered features of cards, combined with
meta-statistics and auto-encoded images lead to the highest
generalisation capabilities and provide quick fine-tuning op-
portunities when new data is available.

REFERENCES

[1] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
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